FINAL REPORT

OF LIQUID INJECTANTS ON NOZZLE ABLATIVE PERFORMANCE

by L.G. Ross and C.A. Le Febvre

UNITED TECHNOLOGY CENTER 1050 E. Arques Avenue Sunnyvale, California 94088

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

December 31, 1970

CONTRACT NAS-3-13304

NASA Lewis Research Center Cleveland, Ohio J. J. Notardonato, Project Manager Solid Rocket Technology Branch Chemical Rocket Division

CONTENTS

	Page
	1
SUMMARY	
INTRODUCTION	5
TEST CONFIGURATION	6
Motor Design	6
LITVC Nozzle Design	15
TVC System Design	13
FABRICATION	17
Fabrication of Liners for Screening	19
Test Nozzles by Swedlow Inc.	19
Fabrication of Liners for Material	20
Verification Tests by Edler Industries	
TESTING	20
Test Facility	25 25
Screening Tests	48
Material Verification Tests	40
A PER A PIT COLUMN TA MA	58
ABLATION DATA Measurement of Ablation Depths	58
Ablation Results	58
ADIACION RESULES	
RESULTS/ANALYSIS	81 81
TVC Performance	84
Analysis of Ablation Data	115
260-in -Diameter TVC Performance Prediction	
TVC Ablation Prediction for the 260-inDiameter Motor	, 124
CONCLUSIONS	126
0010202-2517	(#*\) 107
RECOMMENDATIONS	127
e distribution of the control of the	A-1
APPENDIX	71 1

ILLUSTRATIONS

Figure		Page
-	Comparison of Non-TVC Ablation Rate	4
1		10
2	3-TM-3A Test Motor	11
3	LITVC Subscale Nozzle	
4	Predicted Nozzle Ablation Profiles	13
5	Predicted Ablation of MXA-6012 Asbestos Phenolic	14
6	LITVC Subscale Injectant Orifice	17
7	LITVC Test Motor Installation	27
8	Test Facility Force Measurement Configuration	28
9	TVC Fluid Supply Schematic	29
10	Fluid Supply Installation	30
11	Test Motor Pressure History	34
12	120-inNozzle Posttest Condition	35
13	120-inNozzle TVC Port Ablation	36
14	Nozzle Condition, Quadrant I, Test 6101	37
15	Nozzle Condition, Quadrant III, Test 6101	38
16	Nozzle Condition, Quadrant I, Test 6102	39
17	Nozzle Condition, Quadrant III, Test 6102	40
18	Nozzle Condition, Quadrant I, Test 6103	42
19	Nozzle Condition, Quadrant III, Test 6103	43
20	Nozzle Condition, Quadrant I, Test 6104	44
21	Nozzle Condition, Quadrant III, Test 6104	45
22	Nozzle Condition, Quadrant I, Test 6105	46
23	Nozzle Condition, Quadrant III, Test 6105	47

ILLUSTRATIONS (Continued)

Figure		Page
24	Nozzle Condition, Quadrant I, Test 6106	49
25	Nozzle Condition, Quadrant III, Test 6106	50
26	Nozzle Condition, Quadrant I, Test 6107	52
27	Nozzle Condition, Quadrant III, Test 6107	53
28	Nozzle Condition, Quadrant I, Test 6108	54
29	Nozzle Condition, Quadrant III, Test 6108	55
30	Nozzle Condition, Quadrant I, Test 6109	56
31	Nozzle Condition, Quadrant III, Test 6109	57
32	Nozzle Condition, Quadrant I, Test 6110	59
33	Nozzle Condition, Quadrant III, Test 6110	60
34	Measurement Stations in LITVC Test Motor Exit Cone	61
35	Ablation Depth Measuring Apparatus	62
36	Nozzle Ablation, Quadrant I, Test 6101	63
37	Nozzle Ablation, Quadrant III, Test 6101	64
38	Nozzle Ablation, Quadrant I, Test 6102	65
39	Nozzle Ablation, Quadrant III, Test 6102	66
40	Nozzle Ablation, Quadrant I, Test 6103	67
41	Nozzle Ablation, Quadrant III, Test 6103	68
42	Nozzle Ablation, Quadrant I, Test 6104	69
43	Nozzle Ablation, Quadrant III, Test 6104	70
44	Nozzle Ablation, Quadrant I, Test 6106	71
45	Nozzle Ablation, Quadrant III, Test 6106	72
46	Nozzle Ablation, Quadrant I, Test 6107	. 73

ILLUSTRATIONS (Continued)

Figure		P a ge
47	Nozzle Ablation, Quadrant III, Test 6107	74
48	Nozzle Ablation, Quadrant I, Test 6108	75
49	Nozzle Ablation, Quadrant III, Test 6108	76
50	Nozzle Ablation, Quadrant I, Test 6109	77
51	Nozzle Ablation, Quadrant III, Test 6109	78
52	Nozzle Ablation, Quadrant I, Test 6110	79
53	Nozzle Ablation, Quadrant III, Test 6110	80
54	Performance Summary	83
55	Performance Comparison	85
56	Performance Increase in Large Motors Over Subscale Prediction Resulting from Increased Mixing	86
57	Silica Phenolic Ablation Rate vs Heat Flux on Titan III-C Exit Cones and LITVC Subscale Exit Cones (TM-3 Tests)	89
58	Correlation of Ablation Rate vs Heat Flux for FM-5504	93
59	Silica Phenolic Ablation Correlation Based on Previous Heat Flux Calculation Techniques	95
60	LITVC Nozzle and Titan III-C Energy Thickness vs Mach Number	96
61	Exit Cone Heat Transfer Coefficients vs Mach Number from Boundary Layer Analysis	97
62	Exit Cone Steady State Wall Temperatures vs Mach Number for Silica Phenolic	98
63	Correlation of Heat Flux Multiplier as a Function of Distance from Injection Port and Protuberance Height Parameter	102
64	SP-8030-96 Ablation Correlation	103
65	MXS-198 Ablation Correlation	104

ILLUSTRATIONS (Continued)

Figure		Page
66	FM-5272 Ablation Correlation	105
67	Comparison of Non-TVC Ablation Rates	106
68	Nozzle Ablation Comparison N_2O_4 , E_i 2.5, High Flow	107
69	Nozzle Ablation Comparison N_2O_4 , E_i 2.5, Low Flow	108
70	Nozzle Ablation Comparison Freon, E _i 2.5, Low Flow	109
71	Nozzle Ablation Comparison, SP-8030-96	110
72	Nozzle Ablation Comparison, MXS-198	111
73	Nozzle Ablation Comparison, FM-5272	112
74	Nozzle Ablation Comparison, FM-5272 Injectant Pressure Effects	113
75	260-inDiameter Nozzle LITVC Configuration	116
76	Predicted Side Force Performance for 260-inDiameter Nozzle	117
77	TVC Duty Cycle	118
78	260-in. Nozzle Ablation Prediction for Maximum Duty Cycle	119
79	FM-5272 Ablation Correlation Corrected for Upstream Ablation	120
80	260-in. Optimum Nozzle Ablation Prediction	121
81	120-in. Nozzle Ablation	122
82	260-in Nozzle Ablation Prediction for Minimum Duty Cycle	123

TABLES

Table		Page
I	Test Condition Summary	7
II	Characteristics of UTP-3096 Propellant	9
III	TVC Geometry Summary	16
IV	Exit Cone Fabrication Specifications	18
V	Exit Cone Cure Cycles	21
VI	Screening Nozzle Physical Test Summary	22
VII	Material Verification Nozzle Physical Test Summary	24
VIII	Instrumentation	26
IX	Summary of LITVC Tests 6101, 6102, and 6103	31
X .	Summary of LITVC Tests 6104, 6105, and 6106	32
XI	Summary of LITVC Tests 6107, 6108, 6109, and 6110	51
XII	TVC Performance Summary	82
VTTT	Weight Summary	125

ABBREVIATIONS

BDC bottom dead center

d_ port diameter

F_a axial force

F side force

ID inside diameter

 I_{sp} specific impulse

 $\mathbf{I}_{\mathrm{sp}_{\mathrm{c}}}$ side force specific impulse

L length

LITVC liquid injectant thrust vector control

NASA National Aeronautics and Space Administration

OD outside diameter

PBAN polybutadiene-acrylic acid-acrylonitrile

PM manifold pressure

P/N part number

S/N specification number

TDC top dead center

TVC thrust vector control

W propellant flow rate

injectant flow rate

 ϵ or E area ratio

 $\epsilon_{ extstyle i}$ or $E_{ extstyle i}$ injection area ratio

ABSTRACT

The objective of this program was to evaluate the effect of liquid injectants on the ablative performance of low-cost nozzle materials.

Four candidate low-cost nozzle materials and a standard material were tested with two liquid injectants to determine liquid injectant thrust vector control (LITVC) ablation performance. Ten motor firings were successfully conducted, utilizing a 3.5-in. (0.089 m) throat diameter with average chamber pressures of 600 and 700 psia (4.5x 10^6 N/m 2).

Conclusions are that the low-cost silicas, double thickness and vacuum bag cured, performed similarly to the higher cost standard material and are suitable for both thrust vector control (TVC) and non-TVC affected areas.

Liquid injection with low-cost materials, other than silica-based materials, increased the ablation severely to the point of non-use in TVC areas. In non-TVC areas, the materials also showed greater ablation at the higher test pressures due to the increased heat flux. The nonsilica-based materials are only suitable for greater expansion area ratios well downstream of injectant effects and at lower heat fluxes.

DETERMINATION OF THE EFFECTS OF LIQUID INJECTANTS ON NOZZLE ABLATIVE PERFORMANCE

By L. G. Ross and C. A. LeFebvre United Technology Center

SUMMARY

The objectives of this program were to determine the effect of liquid injection on the ablative performance of low-cost nozzle materials, to measure TVC performance of the fluids used for injection, and to predict the 260-in. motor nozzle performance using LITVC with the best three nozzle materials evaluated.

To accomplish these objectives, 10 motor firings were conducted to evaluate the following nozzle materials and injectant fluids:

Materials

FM-5272	Crepe paper phenolic
KF-418 ^a	Canvas duck phenolic
SP-8030-96	High silica double-weight phenolic
MXS-198	Silica epoxy novalac
FM-5504	High silica phenolic

Injectant Fluids

N2O4	Nitrogen tetroxide
CCL ₂ F-CCLF ₂	Freon 113 grade TF

The nozzle materials were selected based upon previous promising performances on tests without LITVC. The highly reactive N_2O_4 and inert Freon injectants that were selected offered a wide range in performance based upon previous usage. They provide a range of ablation data suitable for interpolation with other TVC fluids.

All 10 tests were completed successfully, and all program objectives were accomplished.

The test motor employed a throat diameter of 3.5 in. (0.089 m), an expansion ratio of 6:1, an average pressure of 600 to 700 psia $(4.5 \times 10^6 \ \text{N/m}^2)$, a duration of 21 to 25 sec, and a PBAN propellant containing 16% aluminum. TVC injection was accomplished at area ratios of 2.5 and 3.5, at injectant to motor flow ratios

^aFiberite Corp. now refers to this material as MXK-418.

 $(\rm W_S/\rm W_a)$ from 0.011 to 0.045. These parameters were selected to provide meaningful scale-up data for larger size motors such as the 260-in.-diameter solid motor.

The candidate materials were screened with both N_2O_4 and Freon during the first six tests. The FM-5504 material, which is used for the exit cone of the UTC 120-in.-diameter motor nozzles, was tested under the same conditions to serve as a basis for comparison. Three materials were selected from the screening tests, FM-5272, SP-8030-96, and MXS-198. The KF-418 canvas duck phenolic was eliminated from further testing because of high chemical attack by the N_2O_4 injectant, poor ablation, and inconsistent erosion patterns.

The three remaining materials were then tested with N_2O_4 at a higher W_s/W_a of 0.045 at injection area ratios of 2.5 and 3.5. Also, one test was conducted with injection at two pressures to evaluate the effects of injection pressure on ablation.

TVC impulse performance was determined for both Freon and N_2O_4 . Results agreed generally with published performance data for both fluids. At high injection flow rates with N_2O_4 , a lower performance than expected was observed. This is attributed to the short length of the nozzle and incomplete reaction of the N_2O_4 .

The ablation data from these tests were evaluated as a function of heat flux in the nozzle. Several important improvements were made in the analysis techniques to correlate the subscale data with 120-in. nozzle data. By accounting for the addition of rubber from the aft closure insulation, correlation with the standard silica material for this 3.5-in. (0.089 m)-diameter throat nozzle and the 37.7-in. (0.96 m)-diameter throat 120-in. motor nozzle was within 0.5 mil/sec $(1.27 \times 10^{-5} \text{ m/sec})$ rms for the non-TVC ablation.

Results of the non-TVC correlation are summarized in figure 1, indicating good performance of the selected silica-based material. Poor performance was observed with both FM-5272 and KF-418. Previous NASA results of these materials were satisfactory but they were obtained under lower heat flux (lower pressure) conditions. They could be suitable materials in larger expansion ratio (low heat flux) areas of large nozzles.

The TVC affected ablation results for the candidate materials showed that the low-cost silica materials, SP-8030-96 and MXS-198, are comparable to the standard silica, FM-5504, and that the crepe paper FM-5272 has approximately 3 times greater ablation and the canvas duck, KF-418, has approximately 10 times greater ablation. Predictions of the 260-in.-diameter nozzle employing these materials and using the LITVC duty cycle and baseline nozzle design presented in NASA Contract No. NAS 3-12040, resulted in the following:

FM-5504 - high silica (standard)	No increase in base- line nozzle liner thickness
SP-8030 - double weight silica	No increase in base- line nozzle liner thickness
MXS-198 - epoxy novalac silica	No increase in base- line nozzle liner thickness
FM-5272 - crepe paper phenolic	No increase in base- line nozzle liner thickness for area ratios above 5:1
KF-418 - canvas duck phenolic	Not acceptable for LITVC

The optimum 260-in. nozzle materials based on LITVC use would be MXS-198 from an area ratio of 2.5 to 5, and FM-5272 from 5 to 8.515.

INTRODUCTION

The possibility of using LITVC for the 260-in.-diameter solid motor with new low-cost nozzle materials requires an accurate determination of LITVC performance, nozzle material ablation, and compatibility. A low-cost nozzle design study with LITVC must consider these effects on each of the candidate materials to allow accurate weight/cost tradeoffs to be made. The determination of the effects of liquid injectants on nozzle ablative performance was the prime objective of this program.

This contract, directed by NASA/Lewis Research Center, utilized candidate low-cost nozzle materials selected from previous NASA work for characterization with LITVC. The materials selected were (1) FM-5272 crepe paper-phenolic, (2) KF-418 canvas duck phenolic, (3) SP-8030 high silica double-weight phenolic, and (4) MXS-198 silica epoxy novalac.

The crepe paper phenolic and canvas duck phenolic were selected because of their low material costs. The high silica double-weight phenolic was selected because of the reduced wrapping time for large nozzles. The silica epoxy novalac cure system was selected because of its vacuum bag cure capability, eliminating the need for large autoclaves for a 260-in.-diameter motor nozzle. MXA-6012 asbestos phenolic was also considered but rejected based upon prefire erosion predictions.

To provide a correlation with large solid motor nozzle ablation with LITVC, FM-5504 high silica phenolic, a standard silica material currently used on the UTC 120-in.-diameter motor nozzle, was also specified for test.

Two injectants, N_2O_4 and Freon, were selected on the basis of a tradeoff study. The reactive N_2O_4 was selected because of high TVC performance and the availability of scale-up data from 120-in.-diameter motor firings. Inert Freon represented the minimum in expected ablation and TVC performance. These data allow interpolation of expected performance for other TVC fluids.

The program was conducted in two tasks: (1) Task I - Effects of Liquid Injectants on Ablative Performance and (2) Task II - Data Analysis.

Subtask 1.1 - Design and fabrication. - The test motor and nozzle were designed to meet the contract requirements. Fabrication of the test hardware was completed during this subtask.

Subtask 1.2 - Screening tests. - Each ablative material was evaluated with Freon and N_2O_4 to select the best three materials for further testing. To minimize the number of tests required to accomplish the program objectives, two separate materials were used in opposing 180° (3.14 rad) segments during the screening tests. Injection was accomplished in the center of each segment; flow rates were low enough to ensure that shock interactions did not occur with the opposite side of the nozzle. Side-force data were measured by staggering the flow time periods on opposite sides of the nozzle.

Subtask 1.3 - Material Verification Tests. - Three materials were evaluated with injection in two nozzle area ratios at higher injectant flow rates. Based on results from the first six tests, the materials selected for tests 7, 8, and 9 were SP-8030-96 high silica double-weight phenolic, MXS-198 silica epoxy novalac, and FM-5272 crepe paper phenolic. The injectant was N2O4.

The canvas duck phenolic material was eliminated from testing because of excessive chemical attack in the injection port areas and general excessive erosion. The $\rm N_2O_4$ was selected as the remaining injectant based upon test results and a study considering side-force performance, cost, density, and compatibility with the nozzle materials.

An additional reduction in the number of tests required was accomplished by injecting in two areas ratios during the material verification tests. This resulted in a total of nine tests.

A tenth test was conducted to evaluate the effects of injection pressure on ablative performance. The material, injectant, and injection area ratio for the tenth test were FM-5272 crepe paper phenolic, N_2O_4 , and 2.5, respectively. FM-5272 was selected because it was the lowest cost remaining material.

The test program requirements, including the selection of materials and injectants, are presented in table I. In the later tests, pressures were reduced to the minimum level specified for the 260-in.-diameter motor because of severe erosion experienced with KF-418 and FM-5272 in the higher heat fluxes of the early tests.

TEST CONFIGURATION

The test configuration consisted of a standard UTC 3-TM-3A test motor utilizing a fully developed PBAN propellant, a subscale nozzle based on 260-in. design criteria and a large solid-type TVC configuration. A description of each major area is presented in the following sections.

Motor Design

The following requirements for the solid motor-nozzle combination were selected to provide meaningful subscale data applicable to the 260-in.-diameter motor:

SI units

Throat diameter, in. Expansion ratio Chamber pressure, average, psig Action time, sec Propellant aluminum content Propellant combustion temperature,	°F	3.5 minimum 6:1 600±50 25 minimum 15±1% (wt) 5,800±200	0.0889 m 6:1 4,136,880 N/m ² 25 sec 15% 3,477°K
Propellant type	•	PBAN	PBAN

Test	Nozzle		Injectant	Injectant	flow rate flow rate		Quad I Quad III pres		Average chamber pressure psi	
No.	Quad I	Quad III	fluid	Quad I	Quad III	Quad I	Quad III	(N/m^2)		(N/m ²)
6101	FM-5505	FM-5504	Freon 113	0.0136	0.0246	2.5	2.5	765 (5.25×10 ⁶)	l ·	1
6102	FM-5272	KF-418	Freon 113	0.0130	0.0121	2.5	2.5	765 (5.25×10 ⁶)	(5.2×10^6)	695 (4.77x10 ⁶)
6103	MXS-198	SP-8030	Freon 113	0.0135	0.0118	2.5	2.5	780 (5.36x10 ⁶)	770 (5.3×10 ⁶)	692 (4.77x10 ⁶)
6104	FM-5504	FM-5504	N2O4	0.0135	0.0240	2.5	2.5	830 (5.7x10 ⁶)	810 (5.58x10 ⁶)	685 (4.71x10 ⁶)
6105	KF-418	FM-5272	N2O4	0.0135	0.0123	2.5	2.5	828 (5.7x10 ⁶)	825 (5.67x10 ⁶)	689 (4.75×10 ⁶)
6106	MXS-198	SP-8030	N2O4	0.0135	0.0120	2.5	2.5	820 (5.65x10 ⁶)	810 (5.58×10 ⁶)	691 (4.77x10 ⁶)
6107	SP-8030	SP-8030	N2O4	0.0447	0.0426	2.5	2.5	735 (5.05×10 ⁶)	725 (5x10 ⁶)	603 (4.15×10 ⁶)
6108	MXS-198	MXS-198	N2O4	0.0435	0.0449	2.5	2.5	732 (5.05x10 ⁶)	708 (4.88×10 ⁶)	
6109	FM-5272	FM-5272	N ₂ O ₄	0.0435	0.0457	2.5	2.5	730 (5.02×10 ⁶)	718 (4.95×10 ⁶)	604 (4.15x10 ⁶)
6110	FM-5272	FM-5272	N ₂ O ₄	0.0137	0.0137	2.5	2.5	720 (4.95×10 ⁶)	280 (1.93×10 ⁶)	606 (4.16×10 ⁶)

TABLE I. - TEST CONDITION SUMMARY

The test motor selected to meet these requirements utilized standard heavyweight hardware with a fully developed propellant, UTP-3096. The characteristics of this propellant are presented in table II.

The test hardware consists of heavyweight steel cases and end closures, designated TM-3. A three-segment grain was designed to attain the required pressure and burning time with a 3.5-in. (0.0889 m)-diameter throat. The grain consists of a cylindrical, radially slotted, internal-burning geometry with a bore diameter of 8 in. (0.2 m). The predicted pressure-time history is slightly progressive-regressive. The two radial slots in the grain with one face restricted offsets the progressivity of the internal-burning cylinder.

The test motor design is shown in figure 2. Ignition of the test motor was accomplished using a standard TM-3 bag igniter containing $125~\rm g$ of BKNO3 pellets with dual 207A squibs. The igniter was installed in the center of the motor on the grain surface.

The motor cases were insulated with silica-loaded Buna-N rubber, sized for two firings to reduce processing costs. The forward closures were insulated with Gen Gard V-61 and were used for two firings without reprocessing. The aft closures utilized ORCO-9250, a silica/asbestos Buna-N rubber insulation, and were refurbished for each firing.

The propellant grain design was stress analyzed for loads arising during environmental extremes. The resulting stress-strain fields were compared with time- and temperature-dependent failure criteria based on measured allowables. The resulting margins of safety are ample, as would be expected from the grain stress integrity observed in previous TM-3 firings with identical grain configurations. The lowest margin of safety is 3.09, which is associated with bore cracking at midgrain during firing at 40°F (278°K).

LITVC Nozzle Design

The subscale LITVC nozzle was designed to simulate exit cone conditions of a full-scale 260-in.-diameter nozzle. This design utilized the required materials and full-scale nozzle fabrication techniques in addition to nozzle geometry to ensure that LITVC ablation can be scaled to a 260-in.-diameter nozzle design. The subscale nozzle is shown in figure 3. Expansion area ratios and nozzle half angle of 17.5° (3.27 rad) from the throat extension to the exit plane have been utilized as planned in the full-scale 260-in.-diameter motor nozzle to allow TVC performance scaleup of the measured data.

A throat with a 3.5-in. (0.0889 m)-diameter was used, which provides adequate subscale data and allows UTC to utilize a proven subscale test motor. A heavyweight nozzle shell was used to maintain ablative plastic structural loads or strain levels at relatively low levels which are typical of large nozzles; i.e., less than 0.0015 in./in.

TABLE II. - CHARACTERISTICS OF UTP-3096 PROPELLANT

Composition, wt %				
		SI Units		
Aluminum	16	-		
АР	68	-		
PBAN	16	-		
Ballistic pro	perties			
Burning rate (1,000 psi), in./sec	0.217	0.0055 m/sec		
Pressure exponent	0.18	-		
Pressure sensitivity to temperature, % F	0.13	-		
Flame temperature, ^O F	5,600	3,367 ⁰ K		
Characteristic velocity, ft/sec	5,050	1,539 m/sec		
Density, 1b/in. ³	0.063	17,100 N/m ³		
Specific impulse (standard), sec	246			

Figure 2. - 3-TM-3A Test Motor

Figure 3. - LITVC Subscale Nozzle

The subscale nozzle utilizes a silica phenolic entrance cap, graphite throat, carbon phenolic throat extension, silica phenolic throat backup, and the candidate material exit cones.

The nozzle entrance is insulated with molded MX-2625 0.5- by 0.5-in. (0.0127- by 0.0127 m) chopped squares of high silica phenolic molding compound. The nozzle entrance insulator, which provides the housing with a thermo and ablative protection, covers an area ratio of 10.1:1 to 3.3:1 (subsonic).

An ablative throat was considered; however, a molded Speer 8882 graphite material was used because of the problems in fabricating a small bias-wrapped structure indicative of the full-scale design.

A throat extension ring using full-scale materials (MX-4926) carbon phenolic and flat-laminate fabrication techniques were used to simulate the full-scale flow conditions and interface into the exit cone liners.

The exit cone liner test section of interest extended from an expansion area ratio of 1.5 to 6. All exit cone liners were tapewrapped parallel to centerline to provide ablation results comparable to full-scale nozzles.

The material which was used as a standard of comparison in the exit cone was FM-5504 high silica phenolic in accordance with UTC specification 4MDS-40722. This material was selected because of extensive use in the UTC 120-in.-diameter LITVC motor firings. The four candidate low-cost materials utilized for exit cones are as follows:

Material	Manufacturer	UTC Specification No.
MXS-198 silica epoxy novalac	Fiberite Corp.	SE0308
SP-8030-96 high silica double- weight phenolic	Armor Co.	SE 0 302
FM-5272 crepe paper phenolic	U.S. Polymermic Co.	SE0301
KF-418 canvas duck phenolic	Fiberite Corp.	SE0300

The exit cone liner thickness design was based on the predicted ablation when experiencing the severest liquid injection condition as shown in figure 4.

One low-cost candidate exit cone material, MXA-6012 asbestos phenolic, was eliminated from testing because early analysis of this material, based upon results from Contract No. NAS 3-10288, revealed that the erosion rate would be of such high magnitude that it would be impractical to design with it as an ablative exit cone liner. The predicted ablation with LITVC is shown in figure 5.

To conserve the number of test firings and amount of hardware used while still obtaining required data for evaluation, the candidate exit cone liners were split along centerline at TDC and BDC; the prefinished half cones of

Figure 4. - Predicted Nozzle Ablation Profiles

Figure 5. - Predicted Ablation of MXA-6012 Asbestos Phenolic

different candidate materials were reassembled, bonded together, and final machined in the following parts: (1) MXS-198 silica epoxy novalac/SP-8030-96 high silica double-weight phenolic and (2) FM-5272 crepe paper phenolic/MXK-418 canvas duck phenolic.

The nozzle/aft closure housing was designed with 1018-1030 low-carbon steel. The walls of the housing were designed to be extra thick to allow for refurbishing and reuse without any warpage or deformaties taking place during firing or disassembly. The exit cone portion of the housing completely supports the exit cone liner and is flanged at the exit plane to utilize a retaining ring.

TVC System Design

The test nozzle LITVC configuration was designed to simulate the injectant flow conditions which are characteristic of large rocket motor LITVC systems. The test nozzle design employed a 17.5° (0.327 rad) half angle, 6:1 expansion nozzle, and TVC injection at expansion area ratios of 2.5 and 3.5.

To utilize empirical scale-up criteria developed by UTC, the same successful injection geometry configuration that was used for the 120-in.-diameter motor was used on this program. This includes six equally spaced injection ports located in a 75° (1.31 rad) quadrant section with an injectant supply pressure of 750 psia $(5,170,500 \; \text{N/m}^2)$. Two injection area ratios, 2.5 and 3.5, were used to allow extrapolation of performance to other injection area ratios, if needed.

The injection port characteristics were designed in accordance with common practice utilized on previous subscale and full-scale programs at UTC. The flow of injectant is regulated by calibrated orifices made from standard AN 815 unions (see figure 6). The orifices were reamed and deburred to assure uniform flow and good stream solidity characteristics. All orifices were precalibrated at a given ΔP to verify desired flow rate, equivalent flow from all orifices, and adequate flow solidity which is important in determining quadrant TVC performance.

The port sizing downstream of the injectant orifices was selected to simulate orifice-to-nozzle entrance port area ratios, port diameters, and L/dp ratios equivalent to that used in 120-in.-diameter motors and subscale configuration. Orifice diameters were calculated to provide the desired test flow rate ratios of table III, where $W_{\rm S}$ is the average injectant rate and $W_{\rm A}$ is the average propellant flow rate. An average $W_{\rm A}$ of 37.8 lb/sec (17.12 kg/sec) and an average aft stagnation chamber pressure of 610 psia (4.2x10 6 N/m 2) were used. Isentropic nozzle pressures at ϵ = 2.5 and ϵ = 3.5 are 53.0 and 32.7 psia (2.5x10 5 N/m 2), which results in a gas specific heat ratio of 1.18. The pressure increase due to TVC at the test values of $W_{\rm S}/W_{\rm A}$ was calculated from the characteristic nozzle backpressure functions developed during the 120-in.-diameter motor program. Actual flow rates were measured during the tests using flow meters and were as predicted.

TABLE III. - TVC GEOMETRY SUMMARY

Freon 0.013 0.028 0.0007 Freon 0.025 0.038 0.00096 N ₂ O ₄ 0.013 0.028 0.0007 N ₂ O ₄ 0.025 0.038 0.0096				
Freon 0.013 0.028 0.0007 Freon 0.025 0.038 0.00096 N2 ⁰ 4 0.013 0.028 0.0007 N2 ⁰ 4 0.025 0.038 0.0096 N2 ⁰ 4 0.045 0.055 0.0014 L/dp ratio L/dp ratio T=0 T=25 sec 2.5 5.6 2.0			Orifice	diameter
Freon 0.025 0.038 0.0096 N204 0.013 0.028 0.0007 N204 0.025 0.038 0.0096 N204 0.045 0.055 0.0014 L/dp ratio L/dp ratio T=0 T=25 sec 2.5 5.6 2.0	Fluid	W /W s a	in.	m
N ₂ O ₄ 0.013 0.028 0.0007 N ₂ O ₄ 0.025 0.038 0.0096 N ₂ O ₄ 0.045 0.055 0.0014 L/dp ratio Nozzle injection Injectant port L/dp T=0 T=25 sec 2.5 5.6 2.0	Freon	0.013	0.028	0.0007
Nozzle injection	Freon	0.025	0.038	0.00096
Nozzle	N ₂ O ₄	0.013	0.028	0.0007
L/dp ratio Nozzle	N ₂ O ₄	0.025	0.038	0.0096
Nozzle injection T=0 T=25 sec 2.5 5.6 2.0	N2 ⁰ 4	0.045	0.055	0.0014
Nozzle injection T=0 T=25 sec 2.5 5.6 2.0	·			
injection Injectant port L/dp T=0 T=25 sec 2.5 5.6 2.0		L/	dp ratio	
injection Injectant port L/dp T=0 T=25 sec 2.5 5.6 2.0				
2.5 5.6 2.0			Injectant por	t L/dp
			T=0	T=25 sec
3.5 5.0 2.5		2.5	5.6	2.0
		3.5	5.0	2.5

Figure 6. - LITVC Subscale Injectant Orifice

The resultant injectant port L/dp varies as the liner ablates and brackets the 120-in.-diameter motor nozzle values of 4.7 to 3.2.

FABRICATION

All test hardware, except the nozzle exit cones, were fabricated by UTC according to design requirements and standard propellant processing procedures. Fabrication of the exit cones was performed by recognized nozzle manufacturers who have demonstrated experience with similar materials. Because determining the ablative performance of the candidate materials was the prime objective of the program, fabrication details for the exit cones are presented.

Specifications for each candidate were prepared for both material and fabrication to ensure controlled conditions for fabrication. The standard material was procured and fabricated in accordance with its 120-in.-diameter motor specification. The detailed specifications are presented in table IV.

Two sources of exit cones were used during the program. The liners for the screening test nozzles were fabricated by Swedlow, Inc., Garden Grove, California. The liners for the material verification tests were fabricated by Edler Industries, Costa Mesa, California. Both suppliers used the same material and fabrication specifications and the same tooling.

TABLE IV. - EXIT CONE FABRICATION SPECIFICATIONS

Specification	Title
UTC SE0300	Tape, Canvas Duck, Phenolic Resin Impregnated
UTC SE0306	Insulation, Canvas Duck Reinforced Plastic, Fabrication of
UTC SE0301	Tape, Creped Kraft Paper, Phenolic Resin Impregnated
UTC SE0303	Insulation, Kraft Paper Reinforced Plastic, Fabrication of
UTC SE0302	Tape, Doubleweight High-Silica Cloth, Phenolic Resin Impregnated
UTC SE0304	Insulation, High-Silica Doubleweight Reinforced Plastic Fabrication of
UTC SE0308	Tape, Silica Cloth, Epoxy-Novalac Resin Impregnated
UTC SE0305	Insulation, Silica Tape Reinforced Epoxy-Novalac Plastic, Fabrication of
4MDS-40722	Tape, High Silica Cloth, Phenolic Resin Impregnated
UTC SE0062	Insulation, High-Silica Reinforced Plastic, Fabrication of

Fabrication of Liners for Screening Test Nozzles By Swedlow Inc.

FM-5504 high silica phenolic 7-in. (0.178 m)-wide tape. - This material, the standard for this program, was used to fabricate the liner in accordance with existing UTC specifications. Warp tape was wrapped on a solid steel conical mandrel parallel to centerline with sufficient material overage for tagend properties testing. A test panel was layed up after completion of the wrapping procedure, and prepared with the wrapped preform for a 1,000-psi (6,894,000 N/m²) hydroclave cure. After completion of the cure cycle, the preform was stripped of the rubber bags and bleeder cloth and sent to the machine shop for final machining.

MXS-198 silica epoxy novalac 7-in. (0.178 m)-wide tape. - Warp tape material was wrapped parallel to centerline on a solid steel conical mandrel, with controlled billet temperature of 90° to 110° (308°K). After wrapping, bleeder cloth was applied, and the assembly was encased in a vacuum bag and cured with a previously layed-up test panel in an air circulating oven.

KF-418 canvas duck phenolic 7-in. (0.178 m)-wide tape. - This material was purchased and fabricated in accordance with UTC specifications. Moderate tape temperature achieved good tack during the wrapping procedure, and billet temperature was held to 90° to 110° (308°K) without additional external cooling systems. After completion of the wrap, the preform and a layed-up test panel was vacuum bag cured in an autoclave. The material machined easily but appeared porous. This phenomenon was attributed to the canvas duck reinforcement, since the alcohol test did not reveal any discrepancies such as cracks, delaminations, or voids. After tag-end and test panel results were obtained, the liner was accepted.

FM-5272 crepe paper phenolic 7-in.- (0.178 m)-wide tape. - The complete lack of tack inherent in this material did not affect the wrapping procedures in the fabrication of an exit cone liner preform. However, the low material thickness increased the wrapping time considerably more than standard silica products and was very time-consuming when compared to the double-weight silica. After the wrap was completed and the test panel prepared, both items were vacuum bag cured in an autoclave.

Because of a high coefficient of thermal expansion, the preform was removed from the mandrel at a high temperature (180° to 200°) (357°K) to prevent freezing to the mandrel and cracking due to material shrinkage. The preform was immediately placed in an oven set at 200°F (360°K) and allowed to cool to room temperature by reducing the temperature 20° (264°K) per hour. Upon acceptance of tag-end and test panel results, the liner was accepted.

SP-8030-96 high silica double-weight phenolic 7-in. (0.178 m)-wide tape. - This material was easy to handle and wrapped without difficulty using moderately low temperature to produce proper tack. Wrapping speed can be increased over conventional materials without hindering product quality. The increased wrapping speed did not produce distortions in the fabric as expected, but seemed to smooth out any anomaly that attempted to start. The preform along with a test

panel was cured in an autoclave. Upon acceptance of tag-end and test panel results, the liner was accepted.

UTC considers that all materials processed satisfactorily and are suitable for large solid rocket nozzle manufacture. However, several of the low-cost materials did not perform as well as expected in non-TVC areas. To obtain representative data of the candidate materials as fabricated, similar to large motor nozzles, Edler Industries was selected to manufacture the remaining four nozzles. Edler Industries was selected because of their suggested modified cure cycles and their previous experience with the materials involved.

Fabrication of Liners for Material Verification Tests By Edler Industries

SP-8030-96 high silica double-weight phenolic. - No problems were encountered in the fabrication of the preform billet with this material. Wrapping speed changes during the fabrication process had no effect on tacking or material handling. The preform and the test panel were vacuum bag autoclave cured. The short cure cycle did not affect physical or mechanical properties of this material.

FM-5272 crepe paper phenolic. - This material was wrapped without difficulty. The preform and the test panel were vacuum bag autoclave cured. To prevent the preform from freezing to the mandrel or cracking during cooldown, the preform was removed at a higher temperature (180° to 200° F) (357° K) and placed in an oven for a long-duration cooldown to room temperature. The short cure cycle did not affect physical or mechanical properties requirements.

MXS-198 silica epoxy novalac. - This material posed no problems during the fabrication process. However, the short time period (2 hr at 210°F) (370°K) to drive off volatiles appeared to be insufficient and some delaminations occurred at the forward end of the liner. New material was ordered but it contained a higher volatile content which was not in accordance with UTC specifications. There was insufficient time to reorder new material to specification and remake the part; consequently the original liner was used.

Cure cycles used by Swedlow Inc. and Edler Industries are summarized in table V. The screening nozzle physical test summary is presented in table VI, and the material verification nozzle physical summary is presented in table VII.

TESTING

Ten tests were conducted in two phases to evaluate the LITVC effects on material ablation in the nozzle. The first phase consisted of six screening tests to evaluate each material with N2O4 and Freon at low injection flow rates. The best three materials were then tested in the second phase with N2O4 at higher flow rates and two injection area ratios. All testing was conducted in test bay ST 1-3 at the UTC Development Center, Coyote, California. The test

TABLE V. - EXIT CONE CURE CYCLES

SWEDLOW, INC.					
Material	Cure ten	perature	Cure duration, hr	Cure j	oressure
	$\circ_{_{ m F}}$	°K		psi	N/m ²
KF-418	180 300	325 418	3.5 4.5	225	1,550,000
FM-5272	180 325	352 432	4.0 4.0	225	1,550,000
MXS-198	180 325	352 432	2.0 3.0	Vacuum	bag pressure
SP-8030-96	180 225 250 340	352 377 390 440	3.0 2.0 3.0 1.5	225	1,550,000
FM-5504	180 310 310	352 424 424	2.0 1.5 4.0	1,000	6,894,000
	<u> </u>	EDLE	R INDUSTRIES		
FM-5272	210 310	368 424	2.0 3.0	225	1,550,000
MXS-198	210 310	368 424	2.0 3.0	Vacuum	bag pressure
SP-8030-96	210 310	368 424	2.0 3.0	225	1,550,000

•		
P/N C06300-01-01 S/N SWU 104 FM-5504 Test 6101		
Test	Requirement	Actual Value
Tensile strength	10,000 psi min (6.89 x 10 ⁷ N/m ²)	14,640 (10 ⁸ N/m ²)
Degree of cure	> 99.5%	99.796%
Density	105 lb/ft ³ min (1,689 kg/m ³)	$106.5 \text{ lb/ft}^3(1,704 \text{ kg/m}^3)$
P/N C06300-01-01 S/N SWU 105 FM-5504 Test 6104		
Test	Requirement	Actual Value
Tensile strength	10,000 psi min (6.89 x 10 ⁷ N/m ²)	$16,030 (11 \times 10^7 \text{ N/m}^2)$
Degree of cure	> 99.5%	99.775%
Density	105 lb/ft ³ min (1,689 kg/m ³)	107.7 lb/ft ³ (1,723 kg/m ³)
P/N C06300-06-01 S/N SWU 101 KF-418/FM-5272 Test	6102	
KF-418		
Test	Requirement	Actual Value
Tensile strength	5,000 psi min $(3.44 \times 10^7 \text{ N/m}^2)$	$6,846 (4.7 \times 10^7 \text{ N/m}^2)$
Degree of cure	> 99.5%	99.33%
Density	81 lb/ft ³ (1,296 kg/m ³)	$78.8 \text{ 1b/ft}^3 (1,260 \text{ kg/m}^3)$
FM-5272		
Test	Requirement	Actual Value
Tensile strength	8,000 psi min $(5.5 \times 10^7 \text{ N/m}^2)$	$13,223 (9 \times 10^7 \text{ N/m}^2)$
Degree of cure	> 99.5%	99.566%
Density	82 lb/ft ³ (1,312 kg/m ³)	82.4 lb/ft ³ (1,318 kg/m ³)
P/N C06300-06-01 S/N SWU 102 KF-418/FM-5272 Test	± 6105	
KF-418		
<u>Test</u>	Requirement	Actual Value
Tensile strength	5,000 psi min (3.44 x 10 ⁷ N/m ³)	13,500 (9 x 10^{\prime} N/m ²)
Degree of cure	> 99.5%	99.398%
Density	81 lb/ft ³ (1,296 kg/m ³)	821b/ft ³ (1,312 kg/m ³)
	<u></u>	

TABLE VI. - PHYSICAL PROPERTIES SUMMARY

(Screening Nozzle Physical Test Summary)

FM-5272		
Test	Requirement	Actual Value
Tensile strength	8,000 psi min $(5.5 \times 10^7 \text{ N/m}^2)$	8,720 (6 x 10 ⁷ N/m ²)
Degree of cure	> 99.5%	99.471%
Density	87 lb/ft ³ (1,312 kg/m ³)	82 lb/ft ³ (1,312 kg/m ³)
P/N C06300-07-01 S/N SWU 102 SP-8030/MXS-198 Tes	st 6103	
SP-8030		
Test	Requirement	Actual Value
Tensile strength	10,000 psi min (6.89 x 10 ⁷ N/m ²)	$12,378 (8.5 \times 10^7 \text{ N/m}^2)$
Degree of cure	> 99.5%	99.530%
Density	105 lb/ft ³ (1,680 kg/m ³)	103.5 lb/ft ³ (1,656 kg/m ³)
MXS-198		
Test	Requirement	Actual Value
Tensile strength	15,000 psi min (10 ⁸ N/m ²)	18,150 (1.2 x 10 ⁸ N/m ²)
Degree of cure	> 99.5%	99.735%
Density	93.6 lb/ft ³ (1,497 kg/m ³)	98.6 lb/ft ³ (15N kg/m ³)
P/N C06300-07-01 S/N SWU 103 SP-8030/MXS-198 Tes	st 6106	
SP-8030-96		
Test	Requirement	Actual Value
Tensile strength	$10,000 \text{ psi min } (6.89 \times 10^7 \text{ N/m}^2)$	13,188
Degree of cure	> 99.5%	99.782%
Density	105 lb/ft ³ (1,680 kg/m ³)	104 lb/ft ³ (1,664 kg/m ³)
MXS-198		
Test	Requirement	<u>Actual Value</u>
Tensile strength	15,000 psi min (10 ⁸ N/m ²)	18,150
Degree of cure	> 99.5%	99.735%
Density	93.6 lb/ft ³ (1,497 kg/m ³)	98.6 lb/ft ³ (1,577 kg/m ³)

TABLE VI. - PHYSICAL PROPERTIES SUMMARY (Continued)

P/N C06300-04-01 S/N E-0033-0-1 SP-8030-96 Test 610	77	
Test	Requirement	Actual Value
Tensile strength	10,000 psi min $(6.89 \times 10^7 \text{ N/m}^2)$	$10,543 \ (7.23 \times 10^7 \ \text{N/m}^2)$
Acetone extraction	.5% max	.43%
Density	105 lb/ft ³ (1,689 kg/m ³)	109.2 lb/ft ³ (1,747 kg/m ³)
P/N C06300-05-01 S/N E-0034-0-1 MXS-198 Test 6108		
Test	Requirement	Actual Value
Tensile strength	15,000 psi min (10 ⁸ N/m ²)	$15,351 (1.06 \times 10^8 \text{ N/m}^2)$
Acetone extraction	.5% max	.11%
Density	93.6 lb/ft ³ (1,497 kg/m ³)	93.6 lb/ft ³ (1,497 kg/m ³)
P/N C06300-03-01 S/N E-032-0-1 FM-5272 Test 6109		
Test	Requirement	Actual Value
Tensile strength	8,000 psi min $(5.5 \times 10^7 \text{ N/m}^2)$	$8,006 (5.5 \times 10^7 \text{ N/m}^2)$
Acetone extraction	.5% max	.5%
Density	82 $1b/ft^3$ (1,312 kg/m^3)	82 lb/ft ³ (1,312 kg/m ³)
P/N C06300-03-01 S/N E-0032-0-2 FM-5272 Test 6110		
Test	Requirement	Actual Value
Tensile strength	8,000 psi min $(5.5 \times 10^7 \text{ N/m}^2)$	$8,110 (5.6 \times 10^7 \text{ N/m}^2)$
Acetone extraction	.5% max	.41%
Density	82 lb/ft ³ (1,312 kg/m ³)	82 lb/ft ³ (1,312 kg/m ³)

TABLE VII. - MATERIAL VERIFICATION NOZZLE PHYSICAL TEST SUMMARY

facility consists of a multicomponent test stand, a portable fluid supply system, and associated data recording and controls. Instrumentation used during the tests is described in table VIII.

Test Facility

Force stand. - The motors were test fired in a six-component force stand instrumented to measure three force components: axial, forward side, and aft side. The vertical legs of the stand were flexured to allow motor movement during the test. The test motor is shown installed in the stand in figures 7 and 8. The side force and the axial force load cells are shown. Capability for calibrating the stand is provided in both the axial direction and side plane,

The forward and aft sections of the stand are connected by a lightweight cradle which maintains alignment from test to test. The motor is installed by attaching the forward closure to the axial thrust pylon and setting the aft closure in a clamp at the aft end.

Alignment of the stand is necessary only once, allowing the testing of three motors per day during the test program.

Fluid supply system. - The fluid supply system used for the LITVC tests is portable and was originally built for subscale 120-in.-diameter motor TVC tests at AEDC, Tennessee. The system has two fluid tanks and associated pressurization and controls. Figure 9 presents a schematic of this system. Installation in test cell ST-3 is shown in figure 10.

The fluid feed system to the test nozzle consisted of a 0.5-in. (0.0127 m) tube section with two separate lines at the aft end of the stand. Each of the two lines had a flow meter, flex tube connection to the nozzle, and isolation hand valve. Injectant temperature was measured in the feedline upstream of the two separate lines.

Screening Tests

Six tests were conducted to evaluate the four candidate low-cost materials plus the standard silica material with N_2O_4 and Freon injection at an area ratio of 2.5. The results for these six tests are presented in tables IX and X.

Freon injectant tests. - The first three tests (6101, 6102, and 6103) were conducted using Freon 113 grade TF as the injectant. This was done to allow reevaluation of the TVC duty cycle if needed for more reactive N₂O₄ tests. An injectant flow rate was selected to obtain a flow rate ratio $W_{\rm S}/W_{\rm a}$ of 0.013, which is indicative of large solid motor requirements. Each candidate material was fabricated in half of the nozzle exit liner, which made it possible to obtain the test results with fewer tests. The standard material was used in both halves of one nozzle, and a higher injectant flow rate was utilized in the extra quadrant. This provided intermediate data between the screening tests and the material verification tests.

TABLE VIII. - INSTRUMENTATION

Parameter	Symbol	Range	SI units
Axial force - 1	FA-1	25,000 1b _f	111,250 N
Axial force - 2	FA-2	25,000 1b _f	111,250 N
Aft side force - 1	FSA-1	1,000 lb _f	4,450 N
Aft side force - 2	FSA-2	1,000 1b _f	4,450 N
Forward side force - 1	FSF-1	500 1b _f	2,225 N
Forward side force - 2	FSF-2	500 1b _f	2,225 N
Chamber pressure - 1	PC-1	1,000 psig	6.89x10 ⁶ N/m ²
Chamber pressure - 2	PC-2	1,000 psig	$6.89 \times 10^6 \text{ N/m}^2$
Manifold pressure, quad I	PM-1	1,000 psig	6.89×10 ⁶ N/m ²
Manifold pressure, quad II	PM-3	1,000 psig	6.89×10 ⁶ N/m ²
Injectant flow rate, quad I	Q-1	5 to 15 gpm ^a	1 to 3 m ³ /sec
Injectant flow rate, quad III	Q-3	5 to 15 gpm ^a	1 to 3 m ³ /sec
Injectant temperature	TI	0 to 140°F	250° to 330 °K
Instrumentation accuracy, ±3% nominal			

a_{Flow} range adjusted for test conditions 5-gpm maximum range for tests 1 through 6 15-gpm maximum range for tests 7 through 10

Figure 7. - LITVC Test Motor Installation

HAND VALVES (HV)

- HV-1. ALT TANK FILL
 - 2. INJECTANT TANK FILL
 - 3. ALT TANK AUXILIARY BYPASS
 - 4. MAIN LINE DRAIN
 - 6. INJECTANT TANK AUXILIARY BYPASS
 - INJECTANT TANK
 MAIN LINE DRAIN
 - 8. ALT TANK GAGE ISOLATION
 - 9. INJECTANT TANK GAGE ISOLATION
 - 10. SECONDARY PRESSURE REGULATOR ISOLATION DOME
 - 11. VALVE ACTUATION REGULATOR ISOLATION
 - 12. PURGE REGULATOR ISOLATION
 - 13. GN₂ SUPPLY
 - 14. PURGE ISOLATION
 - 15. 16. TANK TRANSDUCER ISOLATION
 - 17. 18. 19. 20. SIGHT GAGE ISOLATION
 - 21. SIGHT GAGE DRAIN
 - 22. 23. FILL AND DRAIN PURGE ISOLATION
 - 24. FIELD ISOLATION

SOLENOID VALVES (SV)

- SV-1. PRIMARY PRESSURE DOME ISOLATION
 - 2. DOME VENT
 - 3. SECONDARY PRESSURE DOME ISOLATION
 - 4. SECONDARY PRESSURE DOME ISOLATION

PRESSURIZATION VALVES (PV)

- PV-2. ALT TANK PRESSURE
 - 3. ALT TANK VENT
 - 4. INJECTANT TANK PRESSURE
 - 5. INJECTANT TANK VENT

PRESSURE REGULATORS (PR)

- PR-1. MAIN PRESSURE
- 2. SECONDARY PRESSURE DOME
- 3. SECONDARY PRESSURE DOME
- 4. MOTOR LOADER
- 5. VALVE ACTUATION
- 6. PURGE
- 7. PURGE DOME HAND LOADER

REMOTE VALVES (RV)

- RV-1. ALT TANK AUXILIARY
 - 2. INJECTANT TANK AUXILIARY

PRESSURE GAGES (G)

- G-1. ALT TANK
- 2. INJECTANT TANK
- 3. VALVE ACTUATION
- 4. PURGE

Figure 10. - Fluid Supply Installation

	6101	6102	6103	
TVC injectant fluid	Freon 113 'TF' (CCL ₂ F-CCLF ₂)	Freon 113 'TF' (CCL ₂ F-CCLF ₂)	Freon 113 'TF' (CCL ₂ F-CCLF ₂)	
TVC injectant area ratio Quadrant I Quadrant III	2.5 2.5	2.5 2.5	2.5 2.5	
TVC injectant flow rate, lb/sec (kg/sec) Quadrant I Quadrant III	0.577 (0.257) 1.043 (0.472)	0.560 (0.253) 0.523 (0.236)	0.581 (0.262) ' 0.508 (0.230)	
TVC injectant pressure, psia (N/m ²) Quadrant I Quadrant III	765 (5.25×10 ⁷) 730 (5.02×10 ⁷)	765 (5.25×10 ⁷) 760 (5.22×10 ⁷)	780 (5.36x10 ⁷) 770 (5.3x10 ⁷)	
TVC injection duration, sec Quadrant I Quadrant III	17.2 17.2	17.3 17.3	17.5 17.4	
Motor duration, sec (action time)	21.7	21.2	21.5	
Motor average pressure, psia (N/m^2) (action time)	681 (4.7x10 ⁷)	695 (4.78×10 ⁷)	692 (4.75×10 ⁷)	
Motor average flow rate, 1b/sec (kg/sec)	42.36 (19.2)	43.23 (19.6)	43.04 (19.5)	
Average flow rate ratio, (W _s /W _a) Quadrant I Quadrant III	0.0136 0.0246	0.0130 0.0121	0.0135 0.0118	
Nozzle Materials Quadrant I Quadrant III	FM-5504 FM-5504	FM-5272 KF-418	MXS-198 SP-8030	
TVC on Quadrant I Quadrant III	1.15 3.11	1.10	1.15	
TVC off Quadrant I Quadrant III	18.30 20.25	18.40 20.35	18.65 20.55	
Throat diameter, in. (m) Pretest Posttest	3.508 (0.089) 3.574 (0.091)	3.508 (0.089) 3.574 (0.091)	3.508 (0.089) 3.574 (0.091)	
TVC injection orifice diameter, in. (m) Quadrant I Quadrant III	0.028 (0.00071) 0.038 (0.00097)	0.028 (0.00071) 0.028 (0.00071)	0.028 (0.00071) 0.028 (0.00071)	

TABLE IX. - SUMMARY OF LITVC TESTS 6101, 6102, AND 6103

	6104	6105	6106	
TVC injectant fluid	N ₂ O ₄	N ₂ O ₄	N ₂ O ₄	
TVC injection area ratio Quad I Quad III	2.5	2.5 2.5	2.5 2.5	
TVC injectant flow rate, lb/sec (kg/sec) Quad I Quad III	0.577 (0.261) 1.021 (0.462)	0.579 (0.262) 0.527 (0.238)	0.579 (0.262) 0.515 (0.233)	
TVC injectant pressure, psia (N/m ²) Quad I Quad III	830 (5.7x10 ⁷) 810 (5.6x10 ⁷)	828 (5.7x10 ⁷) 825 (5.68x10 ⁷)	820 (5.65×10 ⁷) 810 (5.6×10 ⁷)	
TVC injection duration, sec Quad I Quad III	17.2 17.2	10.2 17.0	16.9 16.85	
Motor duration, sec (action time)	21.2	21.1	20.7	
Motor average pressure, psia (N/m ²) (action time)	685 (4.7x10 ⁷)	689 (4.75x10 ⁷)	691 (4.76x10 ⁷	
Motor average flow rate, lb/sec (kg/sec)	42.61 (19.3)	42.86 (19.4)	42.98 (19.5)	
Average flow rate ratio (W _S /W _a) Quad I Quad III	0.0135 0.0240	0.0135 0.0123	0.0135 0.0120	
Nozzle materials Quad I Quad III	FM-5504 FM-5504	KF-418 FM-5272	MXS-198 SP-8030	
TVC on Quad I Quad III	1.10 3.10	7.90 3.10	1.15 3.10	
TVC off Quad I Quad III	18.3 20.30	18.10 20.10	18.05 19.95	
Throat diameter, in. (m) Pretest Posttest	3.508 (.089) 3.580 (.091)	3.508 (.089) 3.578 (.091)	3.508 (.089) 3.576 (.091)	

TABLE X. - SUMMARY OF LITVC TESTS 6104, 6105, AND 6106

The initial six tests were run at an average chamber pressure of 695 psia $(4.77 \times 10^6 \ \text{N/m}^2)$. This pressure correlated well with previous subscale and 120-in.-diameter motor firing results. However, non-TVC area ablation on several low-cost candidates was more severe than expected. Consequently, a lower burning rate was used on the remaining four tests to yield an average pressure of 604 psi $(4.15 \times 10^5 \ \text{N/m}^2)$ with lower heat fluxes suitable for the 260-in.-diameter nozzle. The chamber pressures for all 10 tests are shown in figure 11.

The postfire condition of the test nozzles is described in the following sections. These nozzles utilized the same LTTVC injection geometry as the 120-in.-diameter motor nozzle which is shown in figure 12. The same ablation patterns are presented for the test nozzles as exhibited by the 120-in.-diameter motor nozzle. A ridge is formed downstream of the injection port, with eroded valleys around the port extending downstream. There are some slight differences in ablation patterns between the test nozzles and the 120-in.-diameter motor nozzle which are due to the physical distance between injection ports. Figure 13 shows the ablation of the 120-in.-diameter nozzle due to each injection shock with separate erosion patterns for each injection port. The shock for each injection port on the smaller contract nozzles interact due to the closer physical spacing, and only one groove is formed between the ports.

The light areas upstream of the ports on the 120-in.-diameter motor nozzle, which are not present on the test nozzles, are caused by N_2O_4 leakage after the test. The leakage is due to the nozzle-up configuration of the test.

Test 6101. - The standard material nozzle was used with FM-5504 high silica phenolic throughout the nozzle liner. Quadrant I flow rate ratio was 0.0136, and quadrant III flow rate ratio was 0.0246. The posttest condition of quadrants I and III are shown in figures 14 and 15, respectively.

Only slight erosion has occurred in the TVC port valleys for the 0.013 and 0.024 flow ratios. At the higher expansion ratios near the exit, the valleys are smoothed and not evident.

Test 6102. The materials used in this nozzle were FM-5272 crepe paper phenolic in quadrant I and KF-418 canvas duck phenolic in quadrant III. The injectant flow rate ratio was 0.013 in quadrant I and 0.012 in quadrant III.

The postfire condition of the FM-5272 crepe paper phenolic material is shown in figure 16. Severe gouging is evident in the TVC port, as well as the non-TVC, areas. The TVC quadrant is well described by the grooves extending to the exit for each TVC port. This erosion is in sharp contrast to the standard material used in test 6101.

The posttest condition of KF-418, the canvas duck phenolic material, is shown in figure 17. Excessive gouging and grooving is present in the TVC and non-TVC areas. The bondline between the two materials is washed out at the nozzle exit, which may have contributed to some of the excessive erosion at the bond interface. This material appears to be worse than FM-5272 crepe paper phenolic.

Figure 11. - Test Motor Pressure History

Figure 13. - 120-in.-Diameter Nozzle TVC Ablation

Figure 15. - Nozzle Condition, Quad III, Test 6101

Figure 16. - Nozzle Condition, Quad I, Test 6102

Figure 17. - Nozzle Condition, Quad III, Test 6102

Test 6103. - This nozzle utilized MXS-198 silica epoxy novalac in quadrant I and SP-8030-96 double-weight silica phenolic in quadrant III. The injectant flow rate ratios were 0.0135 in quadrant I and 0.0118 in quadrant III.

The posttest condition of the MXS-198 silica epoxy novalac is shown in figure 18. The TVC ports are clearly evident by the raised ridge, as seen with the standard material in test 6101. There is no gouging in the non-TVC areas, and the erosion is similar to that found in the standard material.

Figure 19 shows the SP-8030-96 double-weight silica phenolic material following the test. The ridges are present at each TVC port, and again erosion is similar to the standard material. The bondline has a slight gouge at the forward section of the nozzle but is intact at the exit.

 N_204 injectant tests. - The same nozzle materials were tested with N_204 at similar flow rate ratios. The TVC duty cycles were the same except for the canvas duck material which was the poorest material with Freon. The duty cycle for this material was shortened from 17 to 10 sec to prevent excessive erosion.

Test 6104. - The standard material nozzle was used with injectant flow rate ratios of 0.0135 in quadrant I and 0.024 in quadrant III. Figures 20 and 21 show the conditions of quadrants I and III, respectively. The ridges are present at each TVC port and extend to the nozzle exit. The erosion is greater than experienced with Freon at the same flow rate; however, the non-TVC areas are similar.

Test 6105. - This nozzle used KF-418 canvas duck phenolic in quadrant I and FM-5272 crepe paper phenolic in quadrant III. Injectant flow rate ratios were 0.0135 in quadrant I and 0.0123 in quadrant III. The TVC injection duration in quadrant I was only 10 sec, as discussed previously.

The KF-418 canvas duck phenolic material is shown in figure 22. The non-TVC gouging is present as seen in test 6102; however, the TVC area appears to be quite different. The injection ports are eroded from the initial size of 0.250 in. (0.0062 m) to over 0.750 in. (0.019 m). Also, there are no distinctive ridges behind the TVC ports as exhibited by the silica materials. The ablation in the non-TVC area is less with this exit cone than with the similar part used in test 6102, which indicates a nonreproducible behavior in the material. The excessive erosion of the TVC ports with N₂O₄ precludes use of this material with N₂O₄ liquid injection, and the canvas was eliminated from further testing.

Figure 23 shows the FM-5272 crepe paper phenolic material following the test. The gouging in the non-TVC areas is similar to that experienced in test 6102; however, the total ablation is less. The ridges behind the TVC port are not as large as with Freon, which is due to the $\rm N_2O_4$ reacting in the nozzle downstream of the ports. The effect is less cooling with $\rm N_2O_4$ behind the injectant stream. There was no chemical attack of $\rm N_2O_4$ upon FM-5272, crepe paper phenolic, and this material was selected for further testing. A room temperature cure technique was utilized to bond the exit cone liner in the steel shell to avoid shrinkage stresses at the bondline between the two halves of the exit

Figure 18. - Nozzle Condition, Quad I, Test 6103

Figure 19. - Mozzle Condition, Quad III, Test 6103

Figure 20. - Nozzle Condition, Quad I, Test 6104

Figure 22. - Nozzle Condition, Quad I, Test 6105

Figure 23. - Nozzle Condition, Quad III, Test 6105

cone liners. The bondline erosion was not as severe as test 6102 and probably reduced the material ablation at the interface.

Test 6106. - The nozzle for this test used MXS-198 silica epoxy novalac in quadrant I with a flow rate ratio of 0.0135 and SP-8030-96 double-weight silica phenolic in quadrant III with a flow rate ratio of 0.0120.

The posttest conditions of these materials are shown in figures 24 and 25. Both materials have similar results as the standard material in test 6104 and hence they were selected for further testing.

Material Verification Tests

Four tests were conducted to evaluate MXS-198 silica epoxy novalac, SP-8030-96 double-weight silica phenolic, and FM-5272 crepe paper phenolic with N₂O₄ injection at area ratios of 2.5 and 3.5. One of the tests with the FM-5272, crepe paper phenolic material evaluated the effect of injection pressure by injecting the same flow rate in each quadrant at an area ratio of 2.5 but with different pressures. The results of these four tests are presented in table XI. The nozzle material results are discussed below.

Test 6107. - The SP-8030-96 double-weight silica phenolic material was used for this nozzle with injectant flow ratios of 0.0447 in quadrant I and 0.0426 in quadrant III. Figure 26 shows the condition for injection at $\epsilon=2.5$, and figure 27 shows the condition for injection at $\epsilon=3.5$. The ridges behind the TVC ports are similar in shape for both quadrants; however, the injection at $\epsilon=2.5$ has decreased the effect of the ridge near the exit due to less cooling as the N₂O₄ reacts in the nozzle. All other areas in the nozzle appear good, and the ablation performance is equal to that of previous tests.

Test 6108. - The MXS-198 silica epoxy novalac material was evaluated during this test at injectant flow ratios of 0.0435 in quadrant I and 0.0449 in quadrant III. Figures 28 and 29 present the condition of the two quadrants, respectively. The exit cone liner had delaminations prior to test as a result of a short cure cycle. These delaminations caused the forward portion of the liner to be ejected during the test, which can be seen in the above figures but did not seem to obscure the test area. The aft portion of the liner was similar in performance to the SP-8030-96 double-weight silica phenolic liner except for laminate separations throughout the nozzle, also due to the cure cycle.

Test 6109. - FM-5272 crepe paper phenolic was used at injectant flow ratios of 0.0435 and 0.0457 in quadrants I and III, respectively. Figures 30 and 31 present the condition of the two quadrants. A similar effect on the TVC port ridge as with the SP-8030-96 double-weight silica nozzle is noticed in this nozzle. The boundary of the TVC shock can be seen in each quadrant where the deeper grooves are located at the edge of the TVC ports. Ablation in the non-TVC areas is similar to previous FM-5272 tests, and gouging is still present.

Figure 24. - Nozzle Condition, Quad I, Test 6106

Figure 25. - Nozzle Condition, Quad III, Test 6106

	6107	6108	6109	6110
TVC injectant fluid	N ₂ O ₄	N ₂ O ₄	N2O4	N2O4
TVC injectant area ratio Quad I Quad III	2.5 3.5	2.5 3.5	2.5 3.5	2.5
TVC injectant flow rate, lb/sec (kg/sec) Quad I Quad III	1.675 (0.753) 1.596 (0.721)	1.646 (0.745) 1.699 (0.768)	1.636 (0.740) 1.717 (0.775)	0.515 (0.233) 0.515 (0.233)
TVC injectant pressure, psia (N/m²) Quad I Quad III	735 (5.05x10 ⁶) 725 (5x10 ⁶)	732 (5.05×10 ⁶) 708 (4.88×10 ⁶)	730 (5.03x10 ⁶) 718 (4.95x10 ⁶)	720 (4.95×10 ⁶) 280 (1.93×10 ⁶)
TVC injection duration, sec Quad I Quad III	20.1 20.0	20.0	20.1 20.1	20.1
Motor duration, sec (action time)	24.2	24.8	24.7	24.6
Motor average pressure, psia (N/m²) (action time)	603 (4.15×10 ⁶)	608 (4.18×10 ⁶)	604 (4.16x10 ⁶)	606 (4.17×10 ⁶)
Motor average flow rate, 1b/sec (kg/sec)	37.50 (16.9)	37.82 (17.1)	37.57 (17.0)	37.70 (17.0)
Average flow rate ratio (W _S /W _a) Quad I Quad III	0.0447 0.0426	0.0435 0.0449	0.0435 0.0457	0.0137 0.0137
Nozzle material	SP-8030-96	MXS-198	FM-5272	FM-5272
TVC on Quad I Quad III	1.1 3.0	1.1 3.1	1.1	1.1
TVC off Quad I Quad III	21.2 23.0	21.1 23.2	21.2 23.1	21.2 23.0
Throat diameter, in (m) Pre-test Post-test	3.508 (0.084) 3.576 (0.091)		3.508 (0.089) 3.574 (0.091)	3.508 (0.089) 3.580 (0.912)
TVC injection orifice diameter, in (m) Quad I Quad III	0.055 (0.0014) 0.055 (0.0014)	0,055 (0,0014) 0,055 (0,0014)	0.055 (0.0014)	0.028(0.00071)

TABLE XI. - SUMMARY OF LITVC TESTS 6107, 6108, 6109, and 6110

Figure 26. - Nozzle Condition, Quad I, Test 6107

Figure 27. - Nozzle Condition, Quad III, Test 6107

Figure 28. - Nozzle Condition, Quad I, Test 6108

Figure 29. - Nozzle Condition, Quad III, Test 6108

Figure 30. - Nozzle Condition, Quad I, Test 6109

Figure 31. - Nozzle Condition, Quad III, Test 6109

Test 6110. - This test was conducted to evaluate the effect of injection pressure on ablation using the paper phenolic nozzle liner. N_2O_4 was injected in quadrants I and III at a flow rate ratio of 0.0137. The injection pressure in quadrant I was 720 psia $(4.95 \times 10^6 \ \text{N/m}^2)$, and in quadrant III the pressure was 280 psia $(1.92 \times 10^6 \ \text{N/m}^2)$. Conditions of the respective quadrants are shown in figures 32 and 33. Characteristic gouging of the paper is present, and a clear indication of injection pressure effect is shown. The grooves in quadrant I are deeper and extend to the exit, while those in quadrant III are shallower and blend into the TVC port ridges near the exit. Ablation was much higher for the high injection pressure which suggests a possible design consideration for low-cost materials with LITVC.

ABLATION DATA

Measurement of Ablation Depths

Prefire measurements of the length, ID, and OD were made at the forward and aft ends of the test material liner. Extensive postfire ablation depth measurements were taken in the nozzle exit cone at stations shown in figure 34, using the measurement tool shown in figure 35. This tool has a rod that is aligned with the nozzle centerline on which a dial gauge is mounted. The rod can be rotated and raised or lowered to any nozzle station. A positioning pin is used to establish axial station location.

Angular stations A and G are in the region not affected by LITVC. Angular stations B through F are not precisely fixed but are located to record the greatest depth between the injection ports. For the FM-5272 crepe paper phenolic, the wide extent of the TVC ablation pattern required additional measurements. The additional measurement locations are shown as dashed lines in figure 34. In each nozzle exit cone, sufficient measurements of radii from the nozzle centerline were taken to fully characterize the ablation pattern in that individual nozzle. Prefire radii were calculated from the prefire measurements of the diameters and length. The difference in radii were calculated to give the ablation depths. For each axial location, the maximum depth measured between injection ports were averaged and tabulated as presented in the appendix at the end of this report.

Ablation Results

The average ablation depths are plotted in figures 36 through 53 as a function of area ratio for all tests. Both the TVC effected and non-TVC ablation depths are plotted to illustrate the effect of TVC. The following general observations can be made from these figures:

A. FM-5504 high silica phenolic, SP-8030-96 high silica double-weight phenolic, and MXS-198 silica epoxy novalac show similar ablation characteristics in regions affected by liquid injection. With N_2O_4 as the injectant fluid, there is a distinct point of maximum ablation

Figure 32. - Nozzle Condition, Quad I, Test 6110

Figure 33. - Nozzle Condition, Quad III, Test 6110

Figure 34. - Measurement Stations in LITVC Test Motor Exit Cone.

Figure 35. - Ablation Depth Measuring Apparatus

Figure 37. - Nozzle Ablation, Quad III, Test 6101.

Figure 38. - Nozzle Ablation, Quad I, Test 6102.

65

ACLATION DEPTH, IN.

Figure 39. - Nozzle Ablation, Quad III, Test 6102.

Figure 40. - Nozzle Ablation, Quad I, Test 6103.

Larry Line

67

Figure 41. - Nozzle Ablation, Quad III, Test 6104.

Figure 43. - Nozzle Ablation, Quad III, Test 6104.

Figure 46. - Nozzle Ablation, Quad I, Test 6107.

AREA RATIO

Figure 48. - Nozzle Ablation, Quad I, Test 6108.

Figure 49. - Nozzle Ablation, Quad III, Test 6108.

Figure 50. - Nozzle Ablation, Quad I, Test 6109.

DEFINIS

Figure 51. - Nozzle Ablation, Quad III, Test 6109.

78

DIECZGEN tough has tracing Volume 52. - Nozzle Ablation, Quad I, Test 6110.

AREA PATIO

depth located just aft of the injection port. This distinct point of maximum ablation is not evident with Freon injectant, at least for the flow rates covered in this set of tests.

- B. Freon injectant causes less ablation than N_2O_4 . This is the result of a stronger shock created by the injection of N_2O_4 , the greater energy released in the reactions of exhaust gases and N_2O_4 , chemical reaction between N_2O_4 and the material surface, or a combination of these effects. Both injectants actually cool the nozzle immediately downstream of the injection ports producing less ablation than in the non-TVC areas.
- C. FM-5272 crepe paper phenolic ablates at a much higher rate than FM-5504, MXS-198, or SP-8030-96. The ablation distribution for FM-5272 crepe paper phenolic was quite different with the maximum depths occurring further downstream than for the other materials.
 - The data for KF-418 canvas duck phenolic are very limited because they were acquired only at one circumferential location for one firing with Freon. The ablation of this material was extreme and is presented in figure 39. The peak ablation from these data is twice that of FM-5272 and nearly 10 times that of FM-5504.
- D. The ablation data from test 6108 is questionable because forward delaminations occurred which may have influenced the ablation during the test. Swelling of the nozzle in the delaminated areas also effected the accuracy of the measured ablation.

RESULTS/ANALYSIS

The results and analysis are presented in two categories, TVC performance and ablation performance. In addition, a prediction TVC ablation for the candidate material on a 260-in.-diameter nozzle is presented, using the results obtained during this program.

TVC Performance

Side force performance was determined for each injectant tested during the program. TVC injection was accomplished in two quadrants during all the tests. Injection was staggered to have one quadrant injection for 2 sec to obtain side force data. The results of all the tests are presented in table XII. In figure 54 the data are presented as a ratio of side force to axial force (F_s/F_a) versus the ratio of injectant flow rate to motor flow rate (W_s/W_a) for both N2O4 and Freon. At the minimum value of W_s/W_a , the N2O4 gives 45% more side force. At the highest value of W_s/W_a for both N2O4 and Freon, the N2O4 gives 37% more side force. This is approximately the performance difference predicted for these two fluids.

Test	Quad	In- jectant	Ei	P _c , psi (N/M ²)	Fa, 1bf (N)	Fs, 1bf (N)	W _s ,1b/sec (Kg/sec)	W _a ,1b/sec (Kg/sec)	PM,psi (N/M ²)	W _s /W _a	F _s /F _a	I _{sp} , sec
6101	I	Freon	2.5	736 (5.05 × 10 ⁶)	10,600	97 (430)	0.577	45.7 (20.8)	765 (5.25 x 10 ⁶)	0.0126	0.009	168
6101	III	Freon	2.5	642 (4.4 × 10 ⁶)	9,400	165 (735)	1.043 (0.472)	39.9 (18.1)	730 (5.02 x 10 ⁶)	0.026	0.0175	158
6102	I	Freon	2.5	749 (5.15 x 10 ⁶)	10,900	95 (421)	0.560 (0.25)	46.6 (21.2)	765 (5.25 × 10 ⁶)	0.0120	0.009	170
6103	ı	Freon	2.5	734 (5.05 x 10 ⁶)	10,450 (46,400)	100 (444)	0.581 (0.262)	45.7 (20.8)	780 (5.36 × 10 ⁶)	0.0127	0.0095	172
6104	I	N204	2.5	735 (5.05 x 10 ⁶)	10,450 (46,400)	145 (645)	0.577 (0.260)	45.7 (20.8)	830 (5.7 x 10 ⁶)	0.0126	0.0139	252
6104	III	N ₂ O ₄	2.5	660 (4.54 x 10 ⁶)	9,500 (42,200)	251 (1110)	1.021 (0.464)	40.7 (18.5)	810 (5.57 x 10 ⁶)	0.025	0.024	223
6105	I	N204	2.5	737 (5.06 x 10 ⁶)	10,100 (44,800)	170 (755)	0.579 (0.261)	45.7 (20.8)	828 (5.7 x 10 ⁶)	0.0126	0.0168	293
6106	I	N ₂ O ₄	2.5	739 (5.06 x 10 ⁶)	10,500 (46,700)	150 (667)	0.581 (0.262)	45.7 (20.8)	820 (5.64 x 10 ⁶)	0.0127	0.0138	258
6107	I	N204	2.5	660 (4.54 x 10 ⁶)	9,500 (42,200)	255 (1,105)	1.636 (0.744)	41.2 (18.7)	735 (5.05 x 10 ⁶)	0.039	0.0268	155
6107	III	N2O4	3.5	545 (3.82 x 10 ⁶)	7,000 (31,000)	155 (690)	1.596 (0.729)	33.9 (15.4)	725 (5 x 10 ⁶)	0.047	0.0221	97
6108	I	N2O4	2.5	663 (4.55 × 10 ⁶)	9,510 (42,300)	245 (1,080)	1.646 (0.749)	41.0 (18.6)	732 (5.04 x 10 ⁶)	0.040	0.0257	149
6108	III	N204	3.5	530 (3.65 x 10 ⁶)	6,700 (29,700)	160 (712)	1.699 (0.770)	32.0 (14.5)	708 (4.9 × 10 ⁶)	0.053	0.0238	94
6109	I	N ₂ O ₄	2.5	660 (4.54 x 10 ⁶)	9,490 (42,200)	248 (1,100)	1.675 (0.763)	40.7 (18.5)	730 (5.02 x 10 ⁶)	0.041	0.0261	148
6110	I	N204	2.5	655 (4.5 x 10 ⁶)	9,450 (42,000)	126 (560)	0.515 (0.232)	41.0 (18.6)	720 (4.95 x 10 ⁶)	0.0126	0.0133	244

TABLE XII. - TVC PERFORMANCE SUMMARY

Figure 54. - Performance Summary

A better indication of TVC performance is obtained by comparing these data with similar data from the UTC 120-in.-diameter motors, as shown in figure 55. The $\rm N_2O_4$ data from the Titan program is for both subscale (6.0-in. throat) and full scale (37.7-in. throat). The Freon data were obtained during initial TVC development tests at UTC with a similar TVC configuration. These data represent available industry data for Freon.

As shown in figure 55, there is a decrease in subscale LITVC N_2O_4 ablation rates as the W_8/W_a value increases. At a W_8/W_a of 0.04, the subscale LITVC N_2O_4 data fall on the curve for Freon 113, well below 120-in.-diameter motor data for N_2O_4 . This phenomenon is explained by the physical limitations encountered in scaling LITVC systems. The use of a reactive injectant, such as N_2O_4 , requires a system that allows sufficient reaction time of the N_2O_4 , to obtain improved performance. The LITVC nozzle, which uses a 3.5-in. (0.089 m) throat, has a mixing length of only 4.82 in. in the nozzle from the point of injection to the exit. By comparison, the smallest subscale Titan nozzle had a mixing length of 10.8 in. (0.27 m). The effect of this mixing length has been observed on the Titan program between different size subscale motors and the full-scale motor. Figure 56 presents the results of several different size motor LITVC programs and the scale effect on side force for each motor. The mixing length is the controlling parameters, and at high flow ratios — greater than required for the 260-in.-diameter motor nozzle — even the 120-in.-diameter motor does not get complete reaction of the N_2O_4 .

Based on this length limitation of the LITVC nozzle, the side force data predicated for the 260-in.-diameter motor nozzle in a later section will be based on the 120-in.-diameter motor performance with N_2O_4 for flow rate ratios in excess of 0.015.

Analysis of Ablation Data

A primary objective of this program was to develop a technique for the prediction of ablation performance in the presence of TVC for several candidate materials being considered for the 260-in.-diameter solid rocket motor exit cone liner. This was to be accomplished by using measured data from a series of subscale tests combined with extensive ablation data from 120-in. motor tests in areas affected by LITVC. The test motor nozzles were approximately 1/20 to 1/30 the size of the 260-in. motor nozzle.

Scaling ablation data are very complex because many parameters are needed to fully describe the process commonly called ablation. Addressing only the problems associated with phenolics, the following list of parameters should be incorporated into an ablation model:

- A. Material susceptibility to chemical reactions
- B. Material strength as a function of temperature

Figure 55. - Performance Comparison

Figure 56. - Performance Increase in Large Motors and Subscale Prediction Resulting from Increased Mixing

- C. Material thermal properties (thermal conductivity, specific heat, and density)
- D. Corrosivity of the motor exhaust
- E. Local heat transport properties (recovery temperature, heat transfer coefficient).

The above are some of the major areas of interest in determining ablation. Each can be related to more basic parameters which are mostly interrelated as shown here:

- A. Chemical attack is governed by
 - 1. Wall temperature
 - 2. Chemical composition of ablative material
 - 3. Surface gas composition
 - 4. Surface gas recovery temperature.
- B. Material strength and thermal properties are functions of wall temperature.
- C. Motor exhaust corrosivity and its effect on ablation is a function of
 - 1. Surface composition
 - 2. Surface recovery temperature.
- D. Heat transport mechanisms are a function of
 - 1. Surface recovery temperature
 - 2. Wall temperature
 - 3. Heat transfer coefficient.

In examining the above, it can be seen that given wall temperature, recovery temperature, heat transfer coefficient, material chemical composition, and surface gas composition, one could construct a model of the ablation process. Furthermore, if a separate model is prepared for each combination of propellant gas and ablative material composition with the assumption of frozen flow, the number of parameters can be reduced by two (material chemical composition and surface gas composition). This leaves wall temperature, heat transfer coefficient, and recovery temperature.

Two approaches are possible in the determination of the relationship between ablation rate and the parameters affecting it. One is the theoretical approach in which some model of the process is derived from fundamental considerations. Because of the complexity of the phenomenon, this has generally only been mildly successful for non-graphite based materials. The second approach is to determine the relationship on a semi-empirical basis. This generally consists of making relatively inexpensive subscale motor tests and using the data to predict the ablation in the full-scale motor under consideration. When this is done, one

or two parameters are generally singled out as independent variables with which to form a correlation with measured ablation rate. Parameters which have been used in areas not affected by LITVC include area ratio, Mach number, heat transfer coefficient and wall heat flux.

The development of an accurate and usable model for predicting ablation in regions affected by LITVC is significantly more difficult than for regions not affected by LITVC. The difficulty arises from several causes:

- A. The necessity to include the effect of different LITVC flow rates
- B. The more complex flow field produced by injection
- C. More complex chemical reactions which may take place between the injectant and the ablative material.

Before one can hope to develop a TVC ablation model which works for subscale and full-scale motors, it is necessary to sufficiently understand the ablation process so that ablation in regions not affected by LITVC can be accurately predicted. For example, to isolate the ablation depth occurring during injection, a predicted depth during times without injection must be subtracted from the total measured depth. Because of this need for an accurate prediction model for areas not affected by LITVC, considerable effort has been expended to refine present methods.

Ablation Prediction in Regions not Affected by LITVC

For some time, UTC and other companies have used heat flux as the correlating parameter because it contains the parameters that are most likely to affect ablation rate. Data from different size motors generally have not been consistent, requiring the determination of a multiplier to be used when going from subscale to full-scale motors. The need for such a multiplier implies one of two possibilities:

- A. Wall heat flux is not a satisfactory parameter with which to correlate ablation rate, and a more complex relationship exists between ablation rate and the three parameters, recovery temperature, surface temperature, and heat transfer coefficient.
- B. Calculation of the heat flux is incorrect; if it were correctly calculated, a good correlation would result and be valid for all conditions without the need of scale-up multipliers.

Silica phenolic ablation data taken from 120-in. static motor firings had been correlated with heat flux in the past at UTC. Such a correlation was attempted for the silica phenolic in this series of tests using data from quadrants II and TV where liquid injection had no effect. The attempted correlation is shown in figure 57 along with the 120-in. correlation. Not only is there poor agreement between small-scale and large-scale data, but there is wide scatter in the small-scale data. If heat flux is an appropriate correlation parameter, the data in figure 57 indicate that the heat flux calculated for the

Figure 57, - Silica Phenolic Ablation Rate vs Heat Flux for Titan III-C Exit Cones and LITVC Subscale Exit Cones (TM-3 Tests).

120-in. motor is too low or that the heat flux calculated for the subscale is too high. Furthermore, a similar error appears between quadrant II and IV in the subscale data.

A careful examination was made of the method of heat flux calculations used to create figure 57. The following points were considered:

- A. Calculation of the heat transfer coefficient had been done using the simplified Bartz equation. This technique failed to account for nozzle geometry other than local diameter. Instead, a boundary layer analysis technique developed by Aerotherm Corp. (formerly Vidya) was used. The entire nozzle geometry is input to the computer program BOUND/LAYER which solves the integral boundary layer equations at incremental distances along the nozzle surface.
- B. An arbitrary constant wall temperature had been used in the past. The reasoning had been that the use of the same temperature (called the correlation temperature) in developing a correlation and in using it for predictions would yield consistent results. That is, if a different correlation temperature was chosen, a different correlation curve would result along with correspondingly different fluxes calculated when making predictions. The end result would be the same ablation rate predicted using either correlation temperature.

A problem arises in motors which may have significantly different heat transfer coefficients. Using the arbitrary correlation temperature method, the flux calculated is proportional to heat transfer coefficient (holding recovery temperature constant). The actual heat flux, on the other hand, is not proportional to heat transfer coefficient because a higher flux raises the wall temperature lowering the driving potential.

The improved method of selecting a wall temperature is to use a one-dimensional transient heat conduction computer program to establish the steady state wall temperature, based upon the local heat transfer coefficient and measured or preliminary ablation rate estimate. This, of course, implies an iteration might be necessary when using the model for predictions.

C. Most significantly, the method of calculating recovery temperature was changed to account for film cooling caused by the addition of upstream ablation products to the boundary layer gases. It had been assumed that the recovery temperature was not affected by upstream ablation and could be calculated in the usual way:

$$T_R = (1 + P_r^{1/3} \frac{\gamma - 1}{2} M^2) T_S$$

where:

P_r = Prandtl Number

 γ = Ratio of specific heats

M = Mach number

 T_s = Static temperature corresponding to M.

Most solid rocket motors have aft closures insulated with rubber which ablate at high rates and at low temperatures. When the products of this ablation enter the boundary layer, they lower the effective stagnation and recovery temperatures seen by the nozzle walls downstream of the rubber insulation.

It is assumed that the upstream ablation products remain in a narrow region near the nozzle wall (similar in concept to a boundary layer) and mix with a fraction of the free stream gases. This fraction is the ratio of the annular flow area near the wall, $2\pi R\Delta$, to the total nozzle area, πR^2 . The mass flow in this annular area is, therefore, given by:

$$\mathring{\mathbf{m}}_{g} = \mathring{\mathbf{M}}_{g} \frac{2\pi R\Delta}{\pi_{R}^{2}} = \mathring{\mathbf{M}}_{g} \frac{2\Delta}{R}$$

where

 \dot{M}_{g} = total motor mass flow rate

 \dot{m}_{g} = mass flow in annular area

R = local radius of nozzle

 Δ = a thickness such that if the gas with which upstream ablation products mix were at free stream conditions, this gas would occupy a flow area along the wall of thickness Δ .

To determine the effective stagnation temperature, T^i , an energy balance is made with the upstream ablation products and the mass flux $\mathring{\mathbf{m}}_g$. To account for the growth in the boundary layer and the mixing of free stream gases with the cooled boundary layer, the thickness Δ is assumed to be proportional to the boundary layer energy thickness,

$$\Delta = A \delta$$

The energy thickness, δ , is calculated by the same boundary layer analysis computer program used to calculate heat transfer coefficient. Thus, T_0^{\dagger} is given by

$$T_{o}' = \frac{m_{g}^{C_{P_{G}}} T_{o} + m_{R}^{C_{P_{R}}} T_{o}}{m_{g}^{C_{P_{G}}} + m_{R}^{C_{P_{R}}}}$$

where

 T_0 = free stream stagnation temperature

T = stangation temperature of upstream ablation products

 $^{\mathrm{C}}_{\mathrm{P}_{\mathrm{C}}}$ = specific heat of free stream gas

 $^{\mathrm{C}}\mathrm{P}_{\mathrm{p}}$ = specific heat of upstream ablation products

 $m_{_{\rm D}}^{\bullet}$ = mass flow of upstream ablation products

and mg is given by

$$\dot{m}_g = \dot{M}_g \frac{2\Delta}{R} = \dot{M}_g \frac{2A\delta}{R}$$

Recovery temperature is calculated as

$$T_{R}^{\prime} = T_{o}^{\prime} \frac{(1 + P_{r}^{1/3} \frac{\gamma - 1}{2} M^{2})}{(1 + \frac{\gamma - 1}{2} M^{2})}$$

The constant, A, can be determined empirically by using ablation data from at least two tests which have different values of \hat{m}_R the mass flow of upstream ablation products. Fortunately, three such tests with silica phenolic ablation data are available for this determination:

- A. LITVC test 6101 quadrant IV where \mathring{m}_R from upstream rubber ablation is 0.1928 lb/sec (0.869 kg/sec)
- B. LITVC test 6101 quadrant II where \hat{m}_R from upstream rubber ablation including an additional test strip is 0.2718 lb/sec (0.123 kg/sec)
- C. 120-in. motor data where m_R from aft closure rubber ablation is 5 lb/sec (2.26 kg/sec).

Calculations of heat flux at each ablation measurement station were made for several values of A using wall temperatures calculated with a one-dimensional heat condition computer program, heat transfer coefficients calculated with the boundary layer analysis program, and a recovery temperature which accounts for upstream rubber ablation. A least squares fit line was determined for each test and each value of A. The correct value of A is that which makes all three lines coincide for that single value of A. It was found that the value of A = 1.2 brought the three tests into closest agreement. Figure 58 shows the data from all three tests using a value of A = 1.2. There is less than 0.5 mil/sec rms deviation from the least squares best fit line drawn through the data, and the resulting statistical correlation coefficient was 0.9834 for the correlated data. The tremendous improvement over the previous correlation technique can be seen by comparing figures 57 and 58.

Figure 58. - Correlation of Ablation Rate versus Heat Flux for FM-5504.

Figure 59 presents a correlation for a value of A equal to 1 million which is equivalent to neglecting the effect of upstream ablation products. The effect of failing to consider this effect in the calculation of the heat flux can be seen by comparing figure 59 with figure 58. The scatter of data about the best fit line is much greater. Furthermore, use of this correlation in a region where very little upstream ablation occurs would result in large errors in ablation prediction.

Graphs of energy thickness, heat transfer coefficient, and wall temperature as functions of Mach number that were used in these calculations are shown in figures 60, 61 and 62.

Ablation Prediction in LITVC Regions

UTC has developed a TVC ablation prediction model that accurately models ablation in 120-in. motors with injection at an area ratio of 3.5. In developing the model, the approach was to consider which parameters are important and then to find their functional dependence from the test data available. Ideally, these parameters will sufficiently represent the important pecularities of any motor so that the ablation depth can be predicted for an arbitrary motor with characteristics different from the 120-in. motors upon which the original investigation was based.

The following considerations were taken into account in arriving at the appropriate correlation parameters:

- A. Ablation rate of silica cloth phenolic in the absence of TVC fluid has been successfully correlated with combined convective and radiative heat flux. It is assumed that this correlation is also valid in regions affected by LITVC, provided the correct heat flux at the wall can be calculated. Thus, what is needed is an empirical correlation with which to calculate heat flux in areas influenced by liquid injection. Such a correlation also makes it possible to predict ablation rates for any material once the correlation of ablation rate and heat flux has been obtained for that material.
- The mechanism by which liquid injection produces the desired side force is through the creation of a protuberance in the gas stream, causing a higher static pressure behind the resulting shock wave. The protuberance also disturbs the flow pattern in its vicinity, resulting in increased local flow velocity which increases heat transfer coefficients. Extensive tests have been made to determine the increase in heat transfer around solid protuberances in supersonic flow. The results indicate that for protuberances of a given shape the increase in heat transfer coefficients is primarily a function of the size of the protuberance. This suggests that an appropriate parameter with which to relate heat flux in LITVC-affected regions to injectant flow rate is the height of the resulting protuberance.

Figure 59. - Silica Phenolic Ablation Correlation Based on Previous Heat Flux Correlation Techniques

Figure 60. - LITVC Nozzle and Titan III-C Nozzle Energy Thickness vs Mach Number.

Figure 61. - Exit Cone Heat Transfer Coefficients vs Mach Number from Boundary Layer Analysis.

Figure 62. - Exit Cone Steady State Wall Temperatures vs Mach Number for Silica Phenolic.

Kolpin, Horn, and Reichenbach^b have developed a correlation of maximum injection penetration height as a function of mainstream gas flow and injectant parameters. The correlation they present is

$$\frac{hM}{d_e} = 6.77 \left[\left(\frac{P_i}{P_s} \right) \left(\frac{P_2}{P_v} \right)^n \right]^{0.51}$$

where h = protuberance height

M = free stream Mach number

P; = injectant back pressure

P = free stream static pressure

P₂ = static pressure behind a normal shock

P = vapor pressure of injectant

n = 0.25 for $P_v > P_2$; = 0 for $P_v < P_2$

 $d_{e} = injectant equivalent diameter$ $d_{e} = (4 \text{ m}_{i} / \pi \text{ V}_{i} \rho_{i})^{1/2}$

where m. = injectant mass flow rate

V; = injectant velocity

 ρ_i = injectant density.

The effective protuberance body height is assumed to be proportional to h. Since the effective height is to be used only as a correlating parameter, the proportionality constant does not have to be known and the constant 6.77 in the above equation may be eliminated. For the purposes of this study, P_2 is always greater than P_v so that n=0. This leaves

$$H = d_e (A_e P_i/M^2 P_s)^{0.51}$$

as an appropriate correlation parameter with which to relate increased wall heat flux in the vicinity of injection to injectant flow rate.

C. The size of the area affected by liquid injection is a function only of the protuberance height and is independent of the nozzle size. For example, if the injection hardware and injectant mass flow rates used in this program were used to inject into a very large nozzle, the ablation pattern would not be expected to change. The location of the ablation pattern is clearly tied to the location of the injection ports. Thus, an appropriate parameter relating increased heat flux to axial location in the nozzle is the distance, L, along the surface from the injection port.

bKolpin, M. A., K. P. Horn, and R. E. Reichenbach, "Study of Penetration of a Liquid Injectant Into a Supersonic Flow," <u>AIAA Journal</u>: 853-858, May 1968.

D. By using the ratio of heat flux due to injection to the heat flux without injection as the dependent variable, the correlation becomes independent of the many parameters affecting heat flux. It can be used in conjunction with a standard non-TVC heat flux calculation technique to predict increased heat flux due to injection and ablation rates in any motor.

One further assumption was made before forming a relationship of ablation depth and these parameters; namely, ablation rate was assumed not to depend on previous ablation. This is not strictly valid because the irregular grooves produced around the TVC ports probably influence further ablation. However, until more data are available, this assumption is a reasonable first approximation.

To calculate the ratio of heat flux due to liquid injection to normal heat flux, called the heat flux multiplier, ablation rates during injection must be determined first. From these measured rates and from the correlation of ablation rate and heat flux, the heat flux required to produce the ablation can be calculated. Dividing this flux by the value calculated without injection yields the heat flux multiplier. Using data from 120-in. motor firings, a correlation of ablation rate as a function of L and H was first developed. Then, heat flux multipliers were calculated in the manner described.

According to the considerations and assumptions made, the ablation depth, a, at an axial distance from injection is given by:

$$a = \int_{N} \dot{a}_{N} (L,t)dt + \int_{T} \dot{a}_{T} (L,t)dt$$

where

 $a_n(L,t)$ = the non-TVC ablation rate at time, t, and distance, L

 $\dot{a}_{m}(L,t)$ = the TVC induced ablation rate at time, t, and distance, L

 t_{N} = the time during which no TVC fluid flows

 t_{rr} = the time during which TVC fluid flows.

The term, $a_N(L,t)$, is related to L and t through the correlation of ablation rate and heat flux as shown in figure 58. The heat flux is calculated using the method outlined in a previous section.

Employing the considerations previously mentioned, the term $\dot{a}_T(L,t)$ can be written in the following functional form:

$$\dot{a}_{T}$$
 (L,t) = E (L, H)

where E is the function relating ablation rate to the parameter L and H.

From the above equation, ablation depth can be predicted once E(L,H) is known.

Empirical Determination of the Function E(L,H)

To determine the dependence of ablation rate on L and H, empirical data that give ablation rates for a variety of TVC flow conditions and area ratios are needed. Such data are available from 120-in. motor static tests 1205-8, 1205-9, 1205-10, 1205-12, 1205-13, and 1205-14. These data were first reduced to a set of ablation depths, each corresponding to a unique arrangement of area ratio and TVC flow conditions. A further reduction was made by separating these depths into two components: (1) the depth ablated during TVC flow and (2) the depth in absence of TVC flow. This was done by using the standard heat flux correlation from the 120-in. motors to predict ablation depth in absence of TVC flow. The difference between the measured depth and this non-TVC depth is the ablation depth induced by TVC flow.

Since the ablation data consisted of measurements at discrete area ratios, the function relating ablation rate and H was determined for each area ratio for which measurements were available. The function E (L,H) is represented by the entire set of these discrete functions as shown in figure 63.

Ablation Data in Areas Not Affected by LITVC

Based upon measured data a separate correlation of ablation rate and heat flux was made for each of the test materials using the technique previously described. These correlations are presented in figure 58 and figures 64, 65, and 66 with a least squares best fit line. The correlation for FM-5504 and SP-8030 is very consistent and represents data from both subscale and 120-in.diameter motor firings. In addition, these graphs contain data from firings with different amounts of rubber coming from the aft closure. The correlations for MXS-198 shown in figure 65 exhibit much higher scatter in the data. This is probably due to posttest swelling caused by internal delaminations which occur due to the low pressure cure. Figure 66 presents the correlation for crepe paper phenolic. These data exhibit a definite curvature, possibly because the high heat flux ablation reduces the downstream ablation. This is the same trend that was exhibited in previous programs using this material. Figure 67 shows the relationship between these best fit lines including the line for the standard silica phenolic, also shown in figure 58. Double-weight silica and epoxy novalac ablated roughly 12 to 25% faster than the standard silica, whereas, crepe paper phenolic ablated more than three times as fast as the standard material.

Ablation in LITVC Affected Regions

Figures 68 through 74 present comparisons of ablation depths in regions affected by injection. Figure 68 compares each of the materials for injection of N_2O_4 at an area ratio of 2.5 and for the highest injectant flow rate for each material. Except for the epoxy novalac data which seems affected by the loss of a large portion of the upstream liner, the depth trends are consistent with non-TVC data. That is, the standard silica is lowest, the double-weight slightly higher and the paper phenolic much higher. This consistency

Figure 63. - Correlation of Heat Flux Multiplier as a Function of Distance from Injection Port and Protuberance Height Parameter.

				:

24 SEP 1970

Figure 64. - SP-8030 Ablation Correlation.

Figure 65. - MXS-198 Ablation Correlation.

Figure 66. - FM-5272 Ablation Correlation.

COMPARISON OF NON-TVC ABLATION RATE

Figure 67. - Comparison of Non-TVC Ablation Rate.

106

The move that the the Vetters

Figure 68. - Nozzle Aplation Comparison N2O4, E1 2.5, High Flow.

DESTRICTED TO Beg Descing Wellight Live Ly Control of the

Figure 70. - Nozzle Ablation Comparison Freon, E. 2.5, Low Flow.

Figure 73. - Nozzle Ablation Comparison FM-5272.

OOL.

is continued in figure 70 which shows the same comparison for low injectant flow rates. In this case, the epoxy data is valid and shows the close agreement with double-weight that was found in the non-TVC data.

Figure 71 shows the comparison of the same materials with Freon injected at an area ratio of 2.5. The ablation depths are related to each other in the same way as with N_2O_4 injectant and as for no injection. Except for the paper phenolic, however, the depths are significantly less. All three silica phenolics are without the local maximum depth characteristically found with N_2O_4 at an area ratio of about 2.9. The reduced ablation rates in the silica phenolics are probably a result of cooling of the boundary layer by the non-reacting injectant.

The performance of paper phenolic requires special consideration. Ablation consists of both chemical reaction of free stream and wall species and char removal by shear forces. Because the ablation rate of paper phenolic is so high, the concentration of ablation products in the boundary layer is also high and the diffusion of oxidizing species to the wall is significantly reduced. This difficulty in diffusing of oxidizing species and the low shear strength of the paper phenolic char layer indicate that ablation of paper phenolic is primarily governed by the rate of char removal by shear forces and the rate of char production by heat flux. Thus, the paper phenolic ablation should be nearly independent of injectant fluid type but can be expected to increase with injection due to increased heat flux behind the shock wave.

The ablation data for TVC affected regions must be used with caution. Some of the data, particularly with Freon injectant, indicate that ablation rates can be lowered below that of non-TVC areas by the use of liquid injection. Yet quite the opposite has been demonstrated in large motor firings. This difference can be explained by examining several injection processes which affect the ablation rate.

- A. A shock wave is produced which tends to increase the heat flux and, therefore, the ablation rate.
- B. The flow is distributed by the presence of the protuberance. This effect is strongest when the penetration height is large so that the stream stays somewhat collimated for a significant distance above the surface.
- C. The injectant may react with the free stream gases tending to add heat flux to the wall. The injectant may also react with the wall directly.
- D. If the penetration distance is very low, part of the injectant stream may remain sufficiently close to the wall to provide significant film cooling.

The protuberance height for the small scale motors tested was of necessity very small compared to large scale motors. Because of this, the relative importance of the above phenomena may be different from large protuberances found in full scale motors. The first three effects are probably all present

for the conditions of the 120-in.-diameter motors from which the heat flux multiplier correlation was developed. The cooling effect probably was not present on the 120-in.-diameter motors as the penetration is sufficient to prevent return to the surface until it has been heated by the free stream.

The reaction of N_2O_4 with the exhaust should increase the gas temperature more than injection with Freon. Hence, greater ablation with N_2O_4 would be expected on a full scale nozzle, but not to the degree exhibited in our subscale test.

It is significant that the subscale LITVC data confirm that the basic correlation of ablation rate and heat flux is still valid with injection. This is clearly demonstrated in the relative ablation rates of the various materials. For example, in the case of N_2O_4 injection as shown in figure 69, and at an area ratio of 2.89, the heat flux multipliers calculated for each of the materials are as follows:

Paper phenolic	1.25
Double-weight	1.30
Epoxy novalac	 1.28
Standard silica	1.16

This demonstrates that for the same flow conditions, the resulting heat flux is consistent and that the non-TVC correlation will predict the ablation rate if the heat flux were correctly calculated.

In addition to material comparisons, tests were conducted to show the effect of injectant area ratio. In figures 71, 72, and 73 are presented comparisons of injection at area ratios of 2.5 and 3.5. The materials presented are double-weight silica, epoxy novalac and crepe paper phenolic, respectively. The results here are not unusual in that in each case the ablation pattern remained about the same and shifted towards the injectant port.

The final comparison made was the evaluation of injectant pressure. This has the effect of changing the stream momentum per unit flow area. This data is presented in figure 74 and shows that the higher the momentum the higher the ablation. The flow rate in these two tests were the same. This result is what one would expect in that the momentum should be a measure of how far the injectant will penetrate into the exhaust stream which governs the strength and size of the shock.

260-in.-Diameter TVC Performance Prediction

The TVC performance for the 260-in.-diameter motor is predicted based on the design criteria as shown below and in figure 75:

Injectant	N ₂ O ₄	
Injection area ratio	N ₂ O ₄ 2.71	
Nozzle area ratio	8.515	
Defection range	0.42° (0.0073 rad) to 1.2° (0.021 r	ad)
X/L	0.35	
Injectors/quadrant	4	

Figure 75. - 260-in.-Diameter Nozzle LITVC Configuration

Figure 76. - Predicted Side Force Performance for 260-in.-Diameter Nozzle

Figure 77. - Comparison of 260-Inch and 120-Inch TVC Injection Duty Cycles.

Figure 78. - 260-Inch Nozzle Ablation Prediction for Maximum Duty Cycle.

SA 2E6 1830

Figure 79. - FM-5272 Ablation Correlation Corrected for Upstream Ablation.

Figure 80. - 260-Inch Optimum Nozzle Ablation Prediction.

Figure 81. - 120-Inch Nozzle LITVC Ablation.

Figure 82. - 260-Inch Nozzle Ablation Prediction for Minimum Duty Cycle.
(All Dump)

The predicted performance of the 260-in. diameter nozzle with N_2O_4 injectant is presented in figure 76. The low deflection requirements of the 260-in.-diameter motor are in the maximum LITVC performance range for N_2O_4 . The resultant F_8/F_a for the maximum side force is only 0.0209. Using four injector ports/quadrant, this requires a W_8/W_a of 0.014. Data from the 120-in.-diameter motor program, utilizing six valves/quadrant would require a W_8/W_a of 0.0134, or only a 4% decrease in performance for four injectors instead of six.

TVC Ablation Prediction for the 260-in.-Diameter Motor

The maximum ablation in the TVC affected region of the 260-in.-diameter motor was found to range from 1.98 in. (0.05 m) to 6.0 in. (0.15 m) depending on the material used as exit cone liner. The TVC duty cycle used in the prediction is shown in figure 77 and was developed under Contract No. NAS 3-12040. This duty cycle represents the maximum steering correction expected for a 260-in. diameter motor flight. This duty cycle assumes all of the fluid to be dumped into one quadrant. This, of course, is a very conservative assumption. It has been found from Titan III-C launch experience that typically only 30% is injected into any one quadrant. The results of these predictions are shown in figure 78. Due to the predicted large ablation, the use of crepe paper phenolic in the injectant area would be impractical. There is a possibility, however, that using the crepe paper phenolic at some area ratio downstream could produce an acceptable design.

Examination of the paper phenolic non-TVC ablation indicates that ablation of paper phenolic is affected by the large amount of upstream ablation taking place tending to further lower heat fluxes in the higher area ratio regions. Use of figure 78 to find the area ratio at which paper phenolic could be used would be incorrect because the correlation on which it is based assumes paper phenolic ablation upstream. Therefore, an additional analysis was conducted using the higher correlation shown in figure 79. These results are plotted in figure 80 and show that using the crepe paper phenolic at area ratios in excess of 5 produce acceptable erosion pattern for the present TVC duty cycle. The other three low cost materials shown in figure 81 all exhibit reasonable ablation rates and the choice of best material must be made based upon manufacturing cost and weight tradeoffs. Similar trends exist between predicted 260-in.-diameter and measured 120-in.-diameter motor data. For comparison purposes, ablation data from a high TVC flow rate static firing of the 120-in.-diameter motor is also plotted in figure 81 using the duty cycle which is included in figure 77.

Additionally, a prediction under minimum control requirements has been made in figure 82. This assumes uniform dump of all fluid through the injection port to achieve maximum useful payload. These results represent the minimum ablation that can be expected in the TVC affected region.

Predictions of the 260-in. nozzle extension show that the three silica materials, FM-5504, high silica, SP-8030, double weight silica, and MXS-198, expoxy novalac silica, can be used in the baseline nozzle presented in figure 75. This nozzle has a 3.1-in. (.0787 m)-thick nozzle liner, which is larger

than the worst-case LITVC ablation predicted. The crepe paper phenolic, FM-5272, was found to be unacceptable for use in the 260-in. nozzle at area ratios below 5. It does look favorable at area ratios above this value, and an optimum low-cost nozzle would employ the MXS-198 silica from an area ratio of 2.5 to 5, and the FM-5272 from 5 to 8.515.

Comparison of the nozzle liner weights from an area ratio of 2.5 to the exit, for LITVC, is presented in Table XIII for each of the silicas, plus the optimum combination. The combination shows a weight savings of 3,960-lb. (1,797 kg) over the FM-5504 and SP-8030 materials, and a weight savings of 1,430 lb. (650 kg) over the MXS-198 material. The combination MXS-198/FM-5272 would also have a substantial cost savings with the lower cost crepe paper.

TABLE XIII. - 260-IN. NOZZLE LINER WEIGHT SUMMARY (Liner used from $\mathcal{E}=2.5$ to $\mathcal{E}=8.515$)

	Liner Weight			
Material	1b	kg		
FM-5504 (High Silica)	23,030	10,455		
SP-8003 (Double Weight Silica)	23,030	10,455		
MXS-198 (Epoxy Novalac Silica)	20,500	9,307		
Combination MXS-198/FM-5272 (MXS-198, ξ = 2.5 to ξ = 5) (FM 5272, ξ = 5 to ξ = 8.515)	19,070	8,657		

CONCLUSIONS

Based on the work performed during this program, and on the results and analysis obtained, the following conclusions may be made.

- A. LITVC ablation effects must be considered in the design of the nozzle exit cone liner. The following nozzle materials are rated in order of performance with LITVC, both $\rm N_2O_4$ and Freon injectants.
 - 1. FM-5504 high silica phenolic
 - 2. SP-8030 double weight silica phenolic
 - 3. MXS-198 epoxy novalac silica
 - 4. FM-5272 crepe paper phenolic
 - 5. KF-418 canvas duck phenolic
- B. The canvas duck phenolic, KF-418, exhibited excessive ablation for both TVC and non-TVC and was the only material tested that had a chemical reaction with the N_2O_4 injectant. This material is not recommended for use with LITVC.
- C. The crepe paper phenolic, FM-5272, exhibited ablation rates on the order of 3 times that of the three silica materials at low area ratios in the nozzle, and is recommended for use only above area ratios of 5.
- D. Both of the low cost silica materials, SP-8030 and MXS-198, are suitable for use in the 260-in. nozzle as described in Contract No. NAS 3-12040 with no increase in the liner thickness. The MXS-198 is recommended due to its low pressure cure, vacuum bag only, for use in fabricating large nozzles.
- E. The use of ablation data obtained on subscale motors must include the effects of upstream mass addition due to erosion of the aft closure insulation to accurately predict fullscale nozzle performance.

RECOMMENDATIONS

- A. The ablation rates of both the FM-5272, crepe paper phenolic, and the KF-418, canvas duck phenolic, obtained during this program are approximately twice that reported during the previous NASA materials program, Contract No. NAS 3-10288. The only apparent cause for the difference is the higher pressures used during this program. It is recommended that additional evaluation of these two promising low cost materials be conducted to determine if they have a pressure sensitive threshold to ablation.
- B. Additional development work should be performed with all of the low cost materials evaluated during this program, to accurately characterize their properties and processing variables to obtain more repeatable results for each.
- C. A larger nozzle employing the MXS-198/FM-5272 materials should be evaluated with LITVC to more accurately determine the optimum area ratio interface for the two materials.

APPENDIX

MEASURED LITVC ABLATION DATA

		e ¹
		:

) -				
* 7 / 4		U	a	لعا	L	
	-	INCH	INCH	LNCH	INCE	
	(CW)	(EM)	CMD	(M)	(CM)	A Campana
10 0	3.00	O O		.0°C01	0,013	-
ĸ	0.0	C		(=0.003)	(0.034)	
4.6	1.0.0	00		-0.014	*0.014	
	(~0.010)	(-0,010)	(*0.017)	(-0.037)	(=0.037)	
3,70	0.01	00		#0°0°	0	
· ·	0.0-)	0		(-0,010)	(*0,010)	
\cdot	0	0		0,036	0,019	
	0.0	0		(0.091)	(60000)	
8	0.0	08		0.100	0,071	
	(0)	2		(0.254)	(0,181)	
5	2 0 1	# 4		0.145	0.141	
	7.0)	36		(0,369)	(0,357)	
2.1	CV.	:0		0,180	0.175	
	ູ	46		(0.458)	(0,443)	
1.8	N.	21		0,216	0,208	
	9.0	5.4		(0,549)	(0.529)	

		ĆZ	O > ↓ ■ >	TVC	NON	Z L L C	1,0
STA	A / A *	<	5	AVE	A-001	G. DOT	AVE-DOT
		ISCI	INCI	INCH	INISEC	IN/SEC	IN/SE
	er in der	(C M)	(MD)	CWD	(CM/SEC)	(CM/SEC)	SEC
N	5,63	(V)	C	0.005	0,00136	*0,00031	0.00021
		(0.075)	(10,017)	,01	(0,00346)	(6/000000)	(0,00053)
.	4.61	C	္	00.	0.00277	-	-0.00040
		SQ.	C.	(*0,022)	(0,00703)	(0,00021)	(*0,00102)
\$	3.70	60.	0	00	0,00417	1 -	.0003
		(C)	જ્ય	\$05	(0,01060)	•	6000.
~	3.28	0	ಿ	0	0,0000	•	0.6000.0
		52	ن م	⊅0°	(0.01278)	•	.0022
80	0.80	**	C	, C	0,00659	0,00391	.0037
		,36	CV.	\$20	(0,01675)	•	7600°
0	2,52	71.	- 29 - 29	7.	0.00611	_	,0067
i		44	~	, 37	(0,02060)		.0171
0	2.17	223	- co-1	:C :==	0,01029	0,00664	,0086
	•	5.00	 	14.	(0,02613)	•	0219
=	1,86	200	good S	C	0,01220	_	.0102
)	:	.0.	₹,	50	(0000000)	(0.02116)	,0259

	L.	NCH	(CM)	001	002)		008)	016	041)	039	100)	260	242)	153	389)	18	₹	235	597)
A SERVICE OF THE SERV		,	.		•	•		0	•	-				_				•	-
	لعا	LNCI	(CM)	ં		•		-0.005	0			•	٠					•	•
INFLUENCED	0	INCH	(W D)	୍ଦ	0	୍	0	600.0	ಾ	0	0		~		ູຕ		7.	\sim	₹.
TVC	C	2	(MD)	O.	00	00.	00	0.024	90	0.5			62.	.15	 35	. 18	, 46	200	5.2
	a :	INCH	(CM)	•	•	•	•	0.004	•		- 4			•	•		•	•	•
	* V / V			5,63		4.61		3.70		3.28		2.89		2.52		2.17		1.86	
	STA			N		7		\$		7		aC		О Ъ.		10		-	

57A A/A* INCH (CM) 2 5.63 -0.008 4 4.61 (-0.020 6 3.70 (-0.017 6 3.70 (-0.133 7 3.28 (-0.151 8 2.89 (-0.154) 9 2.52 (-0.124) 10 2.17 (-0.158)	NON-TVC	TVC	ON	SALAS	
3.28 (0.05 2.89 (0.12 2.52 (0.13 2.17 (0.13 2.17 (0.15 1.86 (0.19	· 59	AVE	0.0	00	
5.63 -0.00 4.61 (-0.00 3.70 (-0.01 3.28 (-0.13 2.52 (-0.12 2.52 (-0.12 1.86 (-0.15	ZI IO	Z	IN/SEC	IN/SEC	N.
5.63 -0.00 4.61 0.00 3.70 0.05 3.28 0.05 2.89 0.08 2.52 0.12 2.52 0.12 2.17 0.19	~	CMDD	SEC	ا ليا	M/SEC
4.61 (-0.00 3.70 (-0.01 3.28 (-0.13 2.89 (-0.18 2.52 (-0.12 2.52 (-0.12 1.86 (-0.15	0.03	-0.002	•	0.00167	-0.00008
4.61 (0.01 3.70 (0.05 3.28 (0.13 2.89 (0.22 2.52 (0.22 2.17 (0.19 1.86 (0.19	50) (000	(+00*0-)	(-0.00090)	-	-
3.70 0.05 3.28 0.06 2.89 0.08 2.52 0.12 2.17 0.15	07 0.06	•	_	-	o
3.70 0.05 3.28 0.06 2.89 0.08 2.52 0.12 2.17 0.15	17) (0,16	•		-	_
3.28 0.06 2.89 0.09 2.52 (0.22 2.17 (0.12 1.86 (0.13	52 0.08	. •	0,00241		
3.28 0.06 2.89 (0.16 2.52 (0.22 2.17 (0.31 1.86 (0.40	33) (0,21	•		_	-
2.89 (0.08 2.52 (0.22 2.17 (0.40 1.86 (0.40	63 0,10	. •			0,00152
2.89 0.08 (0.22 2.52 (0.12 2.17 (0.40 1.86 (0.40	61) (0,27	•	•		_
.52 (0.12 (0.31 .17 (0.40 .86 (0.19	OC.	260.0	0.00408	0.00642	0,00449
.52 0.12 (0.31 .17 (0.40 .86 0.19	25) (0,35	-	-	•	-
.17 (0.15 (0.40 .86 (0.19	24 0.17	•	0,00573		0.00664
.17 0.15 (0.40 .86 0.19	16) (0,45	•		-	•
0.19	58 0.23	. •		0,01064	1
0.19	02) (0,58		-	-	_
)	0.00	•	0.00877	1	0,00983
4.8	83) (0,69	•	_	-	(0,02498)

S

			IVC	INFLUENCED			
STA	4 / 4 *	Œ	U	0	le:	i.	-
		HON	INCH	ISCI	INCH	INCH	
		(CM)	(WU)	CMD	(M3)	(CM)	
~ ∾	5.64	0.001	0.018	0.007	C	10.002	
	•	00.		(0.017)	(=0.003)	00.	
7	4.63	ੰ		0.026	-0.001	00.	
	•	40.	. 9	(0.066)	(-0,001)	0.	
y.	3.71	.0.	•	0.000	640.0	.05	:
:	•	಼		(0.126)	(0.124)	.13	
7	3.29	690.0	0.046	0,069	0.059	0.120	
)	-	2	(0.176)	(0,1/6)	.30	
occ	0.89	(C)		0.160	0,144	17	
· ·	į.	w		(0,406)	(0,365)	77 *	
ο.	2.52	6	•	0,208	0,201	19	
	• }	67.		(0.527)	(0.510)	.50	
0	2,18	0.230	• •	0.240	0.239	42.4	
,		ιυ α	• •	(609.0)	(0,607)	.60	
-	1.86	\$2.6		0.246	0.269	25.	:
i		√C.		(0.626)	(0.684)	• 66	

		KON	コントーフ	TVC	NON	コント・マ	TVC
STA	A / A *	Ø	•	AVE	A-UUT	100m9	AVE-DOT
	•	C	INCH	TUZ	INISEC	IN/SE	INISEC
		(M)	(WD)	O	(CM/SEC)	(CM/SEC)	(CM/SEC)
٥	40,00		=0.028	0.004	06000*0-	-0.00130	0.00021
1	>	0.0	(-0,071)	(0,011)	(=0.00228)		(0.00052)
- 4	4.63	C	0.032	00	0005	,001	0.0004
		0	(0,081)	000	.0012	.0037	
•0	3.71	0	0,078	0.036	. •	0,00364	0.00170
1	•		(0,199)	60.	0065	6000	(0,00431)
7	3.29	0.071	0.108	0.075	.00.33	0,00501	0.00347
		aC.	(0,273)	919	,0034	.012	(0.00882)
œ	2,89	-	0.163	. 1 4	0.00553	.007	0.00691
		30	(0,414)	,37	.0140	(0,01924)	(0,01755)
6	5.52	5	7810	.20	0/00.	. •	0.00939
	•	90	(0,466)	.51	.01/9	,021	(0.02384)
10	2.18	σ:	0.224	8		27	0.01105
•		7	(0,568)	(0,603)	,0219	,026	(0.02806)
ب	1.86	<>	0.272	25		S.	0.01207
	; • ,	OC:	(0,691)	(659.0)	(0.02729)	(0.03214)	(0.03065
	·. /						

0.192 0.19 0.247 0.50 0.8247 0.50 0.829) (0.62 0.262 0.26

janih Janih	10	• •	OC.	•	2	N	STA	(*		10	9	0 0	φ	4	N		STA
• - 35 - 55	2,18	2.5%	2.89	3.70	4.61	•	1/4*)))))	2.18	2.52	2.89	3.70	4.51	5.62		A / A *
0.228	1 20 r	0.148	سر مسر ز تر مسر ز	• • 0 • 5		 >	INCH A ZO		.54		• 13 13 13	4	تعدد سومسور براکس (0.029	(CM) I	•
0.209	ہ ان مسا د سر حان م	υ ~~ \\ ^ \\ \	 	0000	 ၁၁ တယ	.00	N=TVC INCH G		to +-		هه سن مست اکستا	· · · · · · · · · · · · · · · · · · ·	دی دی سر جسس ز پ خسو	* 0 *		0,020 0,051)	CONT.	
0.184	. 100 - 100	 	. 136 136	068	00	000	COMD I NOH I NOC		40	 	• W O W	و و پن مجو پن نين	• • 	.07	. 04	0.022	(Z
02	.0038 8600.	139 069 139	.0054	.0026	.0019	.0002	A TOOT IN/SEC		C	ω . ω .		ه ه دن مسو		• 0	0.0	0.015	CECH	
0198	146	0.01048)	0071	0.78	0018	000	JN-TVC G-DBT IN/SEC (CM/SEC)		(0.382)	د د د بن ۱ مسر ۱	(0.301)	(0.305) 0.119	NO	.040			CESO	
N 00 €	.0159	.01648	.0081	.0032	.0017	0009	TVC AVE DO F IN/SEC											

			TVC	INFLUENCED			
STA	AVA	α.	U	0	LL	i.	
		INCE	INCH	E O Z	INCI	I SCH	
		CCMO	(%))	(M O)	(C × 2)	(EM)	
8	5.62	0 * 0 5 0	0.025	0.014	0.018	0.034	٠
		(0.051)	(0,063)	(0.037)	(0.047)	(0,085)	i i
7	4.61	0.040	770 0	0.031	0,038	0.047	
		(0.103)	(0,112)	(0,078)	(0.095)	(0.120)	
٠c	3.70	0.091	0,101	680.0	0.078	0.084	
		(0.232)	(0,256)	(0.227)	(0,198)	(0.215)	
_	9.29	0.103	0,126	0.123	0.120	0.112	
		(0.262)	(0,320)	(0,313)	(0.306)	(0,284)	
æ	2.89	0.178	0.199	0.110	0.190	0.186	
		(0.453)	(0.506)	(0,482)	(0,482)	(0,472)	
o ^	2.52	0.148	0,177	0.164	0.151	0.177	
		(0.376)	(607'0)	(0,418)	(0.459)	(6070)	
10	2,18	0.172	0,176	0.176	0,179	0.185	
		(0.436)	(0,448)	(0,446)	(0.456)	(0.470)	
	1.86	.20	0,199	0.207	0,209	0,212	
		(0.520)	(0,505)	(0.525)	(0,530)	(0,539)	

	,		O Z	0>+12	\rightarrow	O Z	ロントース	TVC
NCH NCH NCH NCSEC NASEC NASEC CMASEC CMAS	STA	AIV	V	G	>	000		VE DO
5.62 -0.004 0.015 0.022 -0.00017 0.00073 0.0010 4.61 0.031 0.045 0.067) (-0.00044) (-0.00185) (-0.0026 4.61 0.031 0.045 0.040 0.00146 0.00213 0.0018 6.052 0.078) (-0.115) (-0.102) (-0.00370) (-0.00242) (-0.0048) 6.052 0.078 (-0.115) (-0.102) (-0.00370) (-0.00542) (-0.0048) 6.052 0.078 (-0.115) (-0.102) (-0.00545 0.00542) (-0.0048) 6.052 0.078 (-0.193) (-0.225) (-0.00545 0.00424 0.0048) 6.056 0.090 (-0.117 0.00545 0.00424 0.0055 6.058 0.0907 (-0.1189 0.00424 0.00484) 6.051 (-0.228) (-0.229) (-0.2297) (-0.00779) (-0.01739) (-0.01799) 6.052 0.114 0.189 0.00681 0.0078 6.0328 (-0.228) (-0.439) (-0.01547) (-0.01730) (-0.021278) 6.0328 (-0.328) (-0.453) (-0.451) (-0.01547) (-0.01730) (-0.00831 0.0068	3		INCH	$\frac{2}{2}$	C	IN/SE	N/SE	INISEC
5.62 -0.004 0.015 0.022 -0.00317 0.001853 0.00264 4.61 0.031 (0.039) (0.057) (-0.0044) (0.00213) (0.00185) (0.00185) (0.00185) (0.00185) (0.00185) (0.00185) (0.00185) (0.00185) (0.00186) (0.0				C Z	S	MISEC	M/SEC	M/SEC
4.61 0.034 (0.057 (-0.00044 (0.00185 (0.0018 4.61 0.031 0.045 0.040 0.00146 0.00213 0.0018 0.052 0.076 0.089 0.00245 0.00542 (0.0048 3.70 0.052 0.076 0.089 0.005245 (0.003542) (0.0048 3.29 0.076 0.076 0.089 0.005245 (0.00354 0.0041 3.29 0.066 0.076 0.089 0.00531 0.00539 (0.0106 2.89 0.099 0.014 0.0229 (0.01467 0.00424 0.0058 2.89 0.099 0.014 0.0429 (0.01186 (0.01076 0.0048 2.89 0.099 0.014 0.00539 0.0068 0.0068 0.129 0.0189 0.00699 0.0068 0.0068 0.129 0.144 0.144 0.149 0.0068 0.129 0.129 0.0138 0.0068 0.0068 0.129 0.129 0.0124 0.0068 0.0068 0.186 <th>8</th> <th>5.62</th> <th></th> <th>.01</th> <th>.02</th> <th>્ં</th> <th>.000</th> <th>.0010</th>	8	5.62		.01	.02	્ં	.000	.0010
4.61 0.031 0.045 0.040 0.00146 0.00243 0.0048 3.70 0.052 0.076 0.089 0.00245 0.00356 0.0044 3.70 0.052 0.076 0.089 0.00245 0.00358 0.0004 3.29 0.056 0.090 0.117 0.00623 0.00624 0.0106 0.056 0.090 0.117 0.00311 0.00424 0.0106 0.056 0.090 0.117 0.00424 0.0055 0.059 0.014 0.027 0.00447 0.00447 0.004467 0.00539 0.0078 0.025 0.129 0.149 0.169 0.004467 0.00539 0.0078 0.129 0.129 0.169 0.00681 0.0078 0.129 0.169 0.00681 0.0078 0.129 0.178 0.0144 0.0084 0.154 0.178 0.00724 0.0084 0.154 0.178 0.00930 0.01020 0.186 0.00930 0.00930 0.00930 0.187 0.254 <th></th> <td></td> <td>\sim</td> <td>03</td> <td>.05</td> <td>*000°</td> <td>.001</td> <td>.002</td>			\sim	03	.05	*000°	.001	.002
3.70 (0.078) (0.115) (0.102) (0.00379) (0.00542) (0.0048 3.70 (0.052 0.076 0.089 0.00245 0.00358 0.0041 (0.132) (0.193) (0.225) (0.00623) (0.00909) (0.0106 3.29 (0.056 0.090 0.117 0.00311 0.00424 0.0055 (0.168) (0.228) (0.297) (0.00790) (0.01076) (0.01140 2.89 (0.099 0.114 0.189 0.00467 0.00539 0.0088 (0.251) (0.297) (0.01186) (0.01369) (0.01269) 2.52 (0.328) (0.479) (0.01186) (0.01369) (0.0225 (0.328) (0.3479) (0.01186) (0.01369) (0.0225 (0.328) (0.3479) (0.01186) (0.01369) (0.0225 (0.328) (0.347) (0.430) (0.01547) (0.01730) (0.0203 (0.390) (0.453) (0.451) (0.01340) (0.02137) (0.0212 (0.5017 0.0247) (0.5011) (0.5216 0.0247) (0.02361) (0.02590) (0.02477	7	4.61	1	* 0 •	•	.0014	.002	.0018
3.70 0.052 0.076 0.089 0.00245 0.00358 0.0041 (0.132) (0.193) (0.225) (0.00623) (0.00909) (0.0106 3.29 0.066 0.090 0.117 0.00311 0.00424 0.0055 (0.168) (0.228) (0.297) (0.00790) (0.01076) (0.0140 2.89 0.099 0.114 0.189 0.00467 0.00539 0.0088 (0.252 0.194 0.169 0.00609 0.00681 0.0079 2.52 0.129 0.169 0.00609 0.00681 0.0079 (0.328) (0.451) (0.430) (0.01547) (0.01730) (0.0083 2.18 0.154 0.178 0.178 0.00724 0.00841 0.0083 (0.390) (0.453) (0.451) (0.01440) (0.02137) (0.0097 (0.501) (0.5049) (0.524) (0.02590) (0.0247			~		•	1600.	.005	.0048
3.29 (0.192) (0.193) (0.225) (0.00623) (0.00909) (0.010655 0.0066 0.090 0.117 0.00424 0.0055 0.0055 0.0066 0.090 0.117 0.00484 0.0055 0.0055 0.00688 0.00688 0.00467 0.00539 0.00688 0.0088 0.0099 (0.225 0.184 0.189 0.00467 0.00539 0.00539 0.00725 0.129 0.154 0.169 0.00609 0.00681 0.0072 0.00724 0.00681 0.0083 0.00724 0.00841 0.0083 0.00724 0.00841 0.0083 0.00724 0.00841 0.0083 0.009730 (0.325) (0.453) (0.451) (0.01544) (0.01542) (0.02537) (0.02559) (0.02559) (0.02559)	•	3.70	10	0.	-	.0024	.003	.0041
3.29 0.066 0.090 0.117 0.00311 0.00424 0.0055 (0.168) (0.228) (0.297) (0.00790) (0.01076) (0.0140 2.89 0.099 0.114 0.189 0.06467 0.00539 0.0088 (0.252 0.129 0.169 0.00609 0.00681 0.0079 (0.328) (0.450) (0.450) (0.01547) (0.01730) (0.0203 2.18 0.154 0.178 0.178 0.00724 0.00841 0.0083 (0.390) (0.453) (0.451) (0.01440) (0.02137) (0.02127 (0.501) (0.524) (0.524) (0.02590) (0.0247			0	64.	•	.0062	600	.0106
2.89 (0.228) (0.297) (0.00467) (0.01076) (0.0140) 2.89 (0.099 (0.114) (0.189) (0.00467) (0.00539) (0.0088) 2.52 (0.251) ((0.290) ((0.479) ((0.01186) ((0.01369) ((0.00792525) 2.52 ((0.129) ((0.367) ((0.479) ((0.01547) ((0.00681) ((0.0203361) 2.18 ((0.32178) ((0.453) ((0.451) ((0.01547) ((0.02137) ((0.02137) 1.86 ((0.197) ((0.02137) ((0.02137) ((0.02137) ((0.02137) ((0.02137) ((0.50136) ((0.02361) ((0.0243) ((0.02361) ((0.02590) ((0.02477)	~	3.29	S	60.	•	.0031	,004	.0055
2.89 0.099 0.114 0.189 0.06467 0.00539 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0079 0.00519 0.0079 0.0079 0.00519 0.0079 0.0079 0.00581 0.0079 0.0079 0.00581 0.0079 0.0079 0.00581 0.0079 0.0079 0.0178 0.178 0.178 0.00724 0.00841 0.0088 0.0088 0.154 0.178 0.178 0.178 0.00724 0.00841 0.0088 0.0088 0.154 0.05219 (0.02512 0.00930 0.0197 0.216 0.206 0.00930 0.01020 0.0097 (0.02591) (0.549) (0.524) (0.02361) (0.02590) (0.0247			V:	22.		6200*	.010	.0140
(0.251) (0.290) (0.479) (0.01186) (0.01369) (0.0225 0.129	æ	2.89	0		•	.0046	\$003	.0088
52 0.129 0.144 0.169 0.00609 0.00681 0.0079 (0.328) (0.430) (0.01547) (0.01730) (0.0203 18 0.154 0.178 0.178 0.00724 0.00841 0.0083 (0.390) (0.453) (0.451) (0.01440) (0.02137) (0.0212 86 0.197 0.216 0.206 0.00930 0.01020 0.0097 (0.501) (0.524) (0.02361) (0.02590) (0.0247			10	0.00	•	.0118	.013	,0225
(0.328) (0.367) (0.430) (0.01547) (0.01730) (0.0203 18	σ.	2.52	\sim	7	•	,0060	900*	.0079
18 0.154 0.178 0.178 0.00724 0.00841 0.0088 (0.390) (0.453) (0.451) (0.01440) (0.02137) (0.0212 86 0.197 0.216 0.206 0.00930 0.01020 0.0097 (0.501) (0.524) (0.02361) (0.02590) (0.0247		;	O:	36	•	.0154	.017	.0203
(0.390) (0.453) (0.451) (0.01440) (0.02137) (0.0212 0.197 0.216 0.206 0.00930 0.01020 0.0097 (0.501) (0.549) (0.524) (0.02361) (0.02590) (0.0247	10	2.18	IC.	, 17		.0072	.008	.0083
0.197 0.216 0.206 0.00930 0.01020 0.0097 (0.501) (0.549) (0.524) (0.02361) (0.02590) (0.0247			O	45	•	.0104	.021	.0212
01) (0,549) (0,524) (0,02361) (0,02590) (0,0247	=	1.86	O	2	•	.0093	010	16000
	ŕ		<u> </u>	,54	.52	.023	025	,0247

			•		!		
A	* ~ \	œ	ပ	3		ls.	
			Z	INCH	Z	INCI	
		CWO	COND	(WO)	(CM)	(CM)	
N.	ر س	S	C	* 0 *	0.040	0.030	
		(0.173)	4.		- ea - ea-eat	(0,076)	
***	,62	0.8	, 08	80.	•	0,062	
		C	02.	22	ંΩાં •	(0,157)	
m	,70	0 . 1 1 1		و مسر زي		06000	
		28	34	35	്ധ	(0,230)	
(2)	56	6	;•	. 15		0,106	
		4	6 4 3	40	(2)	(0,269)	
2	68	0	25.	223	C/J	0,150	
	:	09	,64	.56	Ū	(0.381)	
Ň	52	0.195	0,199	0,184	0,170	0.164	
		0	50	46	3	(0,417)	
N.	18	#	5	.21	C	0.206	
		2	95.	5.4	N.	(0,524)	
ب	86	VC.	30	24	N	0,230	
		66	63	60	ญ	(0,585)	

		ON	ンフトース	TVC	ON	SNITC	TVC
STA	* 4 / 4	4	O	AVE	00.	100-9	00.3
	The second secon		Z	INCI	INISEC	IN/SEC	IN/SEC
		(W)	(KC)	ပ	SEC	(CM/SEC)	SEC
N	5.63	-0.003	00.	್	001	.0003	.0022
		(600.0-)	0.	@ ****	900	08	.0056
7	4.62	0.034	02	0	016	6000	.0038
: : :		(980°0)	S.	2	.0041	,0024	9600.
Ø	3,70	0.100	0.08	•	048	,0041	.0059
		(0.254)	2	ه. س	0122	.0105	.0150
~	ر د د د	0.138	0,089	0.151	0,00668	0,00428	0,00727
		(0.351)	S	ري ري	,0169	.0108	40164
හ	2,89	0.174	** ***	N.	.0082	.0071	102
**************************************		(00434)	(5.) (5.)	ហ្វ	0200	.0181	,0260
o,	2,52	0,219	€. (C)	e	5010.	06000	.0088
		(0.556)	4	7	,0268	,0228	,0223
10	2,18	0.286	2.4	N	,0138	.0115	.0105
		(0.726)	09.	S.	0350	,0294	0269
504 504 3	 		200	N	0101	0,	-
		(0.534)	999	AC.	.0258	0321	7000.

+		1 / C	INFLUENCED		
	cc '	ပ	ာ	تعا	i.
	ICZ	HONI	INCH	Z	Z
	2	Σ	(WO)	(M)	(CM)
	0.058	50		2,	0.
	(0.148)	(0,148)	(0,143)	(0,140)	(0.133)
	60.	50	.10	τ Ο	60
	S	.24	* ? ?	.2	23
	. 1 4	.15	.15	7.1.	-
	36	,38	33.00	35	3
~	.17	6.	117	. 1	
	77.	22.0	43	37	4
2.89	21	₩	52	ء . ست : س	
	5.4	55	56	্ব	
2.52	•	1.8	16		
	4.8	47	4.3	77	. 7
er.	,20	7	20	20	- ~
	51	54	5.2	5	. L
_	24	2.	2.	\ \ \ \ \	, (v
	61	0 4	62	 	79

•		ON	N-TVC	TVC	7		7 \ 1
STA	* V / V	∢	១	AVE	A-UNI	6-DUT	VF TO U
		INCH	S	INCH	N / SE	N	1 N / N F
		CCMO	(CM)	(WD)	(CM/SEC)	(CW/SEC)	(CM/SEC)
⊘ i	5.64	0.017	0	0.056	8000	000	
4	č	(0.043)	(0,036)	(0.142)	(0.00209)	(0.00174)	0.00000
7	4.63	\sim	80.	60.	1200.	.0038	700
	,		.20	, 23	.0070	9600.	
٥	3.71		***	• 1 4	.0056	,0064	00.
	. (^ :	ه. دن	.37	.0144	.0162	017
	3.29		7	•	69000	.0070	00.
(ŧ.	\sim	3.7	7.	.01/5	.0179	0.0
æ	2.89		7.	~	0,06713	0082	
(ť	~	43	₹.	.0101	0210	026
S	2.52		<u>.</u> ک		.0089	8600	800
	.\$	-	.51	₹.	.0227	.0248	000
>	2.18	A :	~ ~ ~	0.208	0.01325	.0107	010
•		_	• 56	5	.0260	0272	0.25
=	 1.86	<u>m</u> .	.25	N	.0114	0124	0.0
		(0.601)	• 65	9	(0.02305)	0316	
	,						:

S T A	4 5 A/A +	0000 62	TVC C C C C C C C C C C C C C C C C C C C	INFLUENCED D INCH (CM) 0.009 (0.023) 0.013 (0.033)	INCH (CM) -0.017 (-0.043) -0.001 (-0.004)	INCH (CM) (-0.015 (-0.038) 0.008 (-0.021)
6	3.70	سسين	. 08	.01	000	SO W US
o ~	•	100	500	6 to 10 to 1	52	. 43
o oo	, . 300	36	169	+ ~	.17	. 20 . 51
•	2.52	0.166	. 20 . 52	.50 51	5 2 1	500
10	2.17	.20	. 244 621	· 23	. 25 4	. 25 5
		NON	TVC	<	Z	ONTIVO
STA	^ A *	INCH	CMD HONI	COMI	A-DOT IN/SEC)	6
N	5.64	N Jo	.00	مبر ربي	9 G G	000
4	4.62	.08	03 10 10	.00	.0034 .0088	.0005
. u	•	(0.232)	0.034	(0.043)	0.00377	0.00140
	•	.27	110	0 0 3	.0044	.0024
7	3.28	• 10 • 26	.709 .341	.06	.0043	.07063
œ	2 8 8 9	ہ ہ استانہ انتا≘	2 2 3 4 2 4 7 4 4 7 4 6		0056	.0784
9	2.52	• 17 • 17			007X	1991
010	2.17	. 22	22.00	. 42	.0091	.2189
		⊘ ^	(5,7/5)	(0.512)		2386

			TVC	INFLUENCED			
STA	A / A *	œ	ပ	2	LL)	L.	
		INCE	TORI	INCH	INCH	ISS	
		(CM)	(CM)	(M D)	(K3)	(CM)	
N	3.64	0.039	0.	0.023	\circ	• 0 4	
CV*	21.2		(0,071)	(850.0)	(9,0,0)	(0.107)	
)	: •	(0.130)	, . , . , . , .	, • •	⊃ ~~	5.5	
7	4.62	.07	40.	0	\circ	80.	
!		.19	1.	-		22	
i ن	4 . 15	60.	0.5	_	\circ	. 1 4	
		.23	# 17	C.	\sim	35	
\$	3.70	• 13			~	. 18	
	:	س	.29	ع. ثما	m	46	
7	3,28	. 12	س	•	-	13	
		31	34	.س	ര	33	:
Œ	5 8 9	.16	.20	~	N.	22.	
		.42	5.2	₹.	10	.56	
5	2.52	.20	2.4	~i	OV	. 25	
		51	\$. S	ι.		65	
, 10	2.17	00.	000	0	\circ	00.	
		00	00	(00000)	(00000)	00.	

		N SN	÷	·		() ()	
		?	ر م	ر - -	2		2
STA	A / A *	∢	©	AVE	0	C*00T	=
		INCH	S	S	NISE	SE	INISE
		(CM)	(CM)	(CM)	(CM/SEC)	(CM/SEC)	(CM/SEC)
8	5.64	0.004	.0	.03	; •	6000	20013
			(650.0)	(0,083)	₹	(0,00244)	(0,00342)
crs	5.12	0	20.	* 0 4	.0004	.0024	.0018
		0.5	. .	• •	.0011	.0061	.0047
7	4.62	0.1	8°C.	.06	.0007	.0034	0028
		0.4	2.	17	.0018	.0088	.0071
ហ	4.15	70	60.	60.	.0018	.0037	.0039
		~ −−	5	.24	,0046	.0095	0100
\$	3.70	0.6	60.	. 14	.0028	.0040	.0059
	1	17	47.	.36	.0072	.0102	0151
_	3.28	0 /	=-	.13	.0706	.0047	.0054
,		34	ς. Ω	,33	.1793	.0120	.0139
œ)	5.89	9	• • •	00.	\$620	.0061	.0000
		ري م	, 3G	00.	1661.	.0157	0000.
3 ^	2.52	œ	€ ∓ •	00.	00851	.0079	00
	i	0	ে ক	್ಕ	,2189	.0202	0000
0	2.17	N.	£ 2,	00.	6860*	0005	00
		(54775)	(0,584)	(00000)	(0.23865)	(0.02435)	(000000)

)))
INCH
000
^
~
-0,063)
;
_
_
~

-		O:N	NON-TVC	TVC	C Z	SALLNON	ŢVŢ
STA	AIV	ď	9	AVE	APOUT	5.00T	AVETOR
		I SSI	LOCH	INCH	IN/SEC	TN/SFC	
		(CM)	(MD)	(CMO)	(CM/SEC)	(CM/SEC)	COMINECO
⊘ i	5,65	10.032	0.010	-0.017	-0.00131	0.000.0	04000 O=
		(.0.082)		(-0.044)	(-0.00333)	(66000*0)	0.000.000
7	4.63	0.000	0.012	-0.016		0.00049	10.00044
i		(-0.001)	(0,031)	(-0,040)	(*0.00003)	(0.00124)	(=0.00162)
in .	4.16	0.021	0.031	-0,015	0,00085	0.00124	0,000,0
		(0.053)	(0,078)	(-0.037)	(0,00216)	(0,00314)	(=0.00152)
•	3.71	0.063	0.006	0.001	0.00256	0.00268	0.00003
	* ti	(0.161)	(0,168)	(00.002)	(0,00651)	(0,00680)	(6000000)
_	3.24	0.113	660.0	0.068	0.00458	0.00400	0.00274
¢		(0.288)	0 0,251)	(0.172)	(0.01164)	(0,01017)	(0.00695)
0	× × ×	0.171	0.166	0,169	0.00692	0,00672	0.00686
•	: : : : : :	(0.434)	(0,422)	(0.430)	(0.01757)	(0.01707)	(0,01743)
>	2.52	0 283	662.0	0,333	0,01145	0,01211	0.01348
		(0,718)	(0.760)	(0,846)	(0.02908)	(0,03075)	(0.03425)
					The state of the s		A the same of the contract of the same and the same of the contract of the con

			TVC	INFLUENCED	The second secon	COURT IS MORE A COMMON BOOK TAKENING A SEMENTAL AS	- Marin area marin managagarea () o o o o o o o o o o o o o o o o o o
STA	A/A*	B	C	Ü	E	F	
		INCH	INCH	INCH	INCH	INCH	
		(CM)	(CM)	(CM)	(CM)	(CM)	
2	5.65	-0.017	≈0.043	-0.010	-0.007	-0.011	
	,	(-0.043)	(-0.109)	(=0.026)	(-0.017)	(=0.029)	enteren erakur e
4	4.63	0.043	-0.019	-0.005	0.004	0.033	
		(0.108)	(-0.049)	(-0.013)	(0.011)	(0.084)	the second second second second
5	4.16	0.088	0.045	-0.017	0.047	0.074	
		(0.223)	(0.114)	(-0.044)	(0.119)	(0.187)	entropie o se se a se est a company
6	3.71	0.138	0.121	0.079	0.097	0.140	
		(0.350)	(0.306)	(0,200)	(0,246)	(0,355)	Charles and an area of the American particles of the American particle
7	3.29	0.154	0.164	0.157	0.171	0.178	A Company of the Company
		(0.392)	(0.416)	(0.399)	(0.436)	(0.453)	
8	2.89	0.176	0.214	0.229	0.228.	0.229	*
		(0.446)	(0,543)	(0,582)	(0,579)	(0,582)	the company of the same of the same of
9	2,52	0.307	0.383	0.412	0.345	0.335	
		(0.779)	(0,973)	(1.046)	(0.876)	(0.852)	and the second of the second of the second s

		NO	N-TVC	TVC	NO	N-TVC	TVC
STA	A/A*	Α	Ğ	AVE	A-DOT	G-DUT	AVE-DUT
		INCH	INCH	INCH	IN/SEC	IN/SEC	IN/SEC
		(CM)	(CM)	(CM)	(CM/SEC)	(CM/SEC)	(CM/SEC)
2	5.65	0.000	-0.024	-0.018	0.00000	-0,00096	-0.00072
		(0.000)	(=0,060)	(=0,045)	(0,00001)	(-0.00245)	(-0.00182)
4	4.63	0.004	0.014	0.011	0.00018	0.00057	0.00045
		(0.011)	(0,036)	(0.028)	(0.00046)	(0.00144)	(0.00115)
5	4.16	0.007	0.037	0.047	0.00027	0.00151	0.00191
An en en		(0.017)	(0,095)	(0.120)	(0.00068)	(0.00383)	(0.00485)
6	3.71	0.046	0.082	0.115	0.00187	0.00334	0.00464
		(0.117)	(0,209)	(0.291)	(0.00474)	(0.00847)	(0.01179)
7	3.29	0.083	0,130	0,165	0,00335	0.00528	0.00668
		(0.210)	(0,331)	(0.419)	(0.00850)	(0.01341)	(0.01697)
8	2.89	0.135	0.214	0.215	0.00545	0.00866	0.00871
CONTRACT OF THE STATE OF		(0,342)	(0,543)	(0.546)	(0.01383)	(0.02198)	(0.02212)
9	2.52	0.259	0.279	0.356	0.01048	0.01130	0.01443
		(0.658)	(0,709)	(0,905)	(0.02663)	(0.02869)	(0.03665)
		The state of the books of the state of the s	. Providence is a series of the series of th				

i			TVC	INFLUENCED			
STA	A / A *	œ	Ų	a	L	L	
		INCH	INCH	S	LOCI	Z	
		(CM)		(X ()			
				:		∑ _>	
2	5.64	. O		2	,	S.	
		6	~	0		U .	
7	4.63	Č.	 1	ه ري دي:	•	7 C	
ŝ		~	. 80	∵ας •		, v	
n	4.15	æ ~	(C)	.37			
,	• !	(0.714)	(0.823)	(0.956)	(0,908)	(0.823)	
e ·	3,71	.23	€. ~	.37		· ~	
	!	0/0	8	96		30	1
_	3.29	23	9	35		, v.	
	. (6	74	06:		0	
5	ν π	34	36	36	-	4	
	1	& &	ر ا	93	•	. S	
ъ	2,25	\sim	46	5.2	-	24	
((V)	~~ &	333		<u>ر</u> م	1
2	2.10	0	5. U	55	_	45	
		(1.269)	0.7	(1.402)	(1,354)	19	1

		NON	N-TVC	>	SN	C > 1 = 2	4
STA	*4/4	⋖	9	AVF	5	١) د د د د
			2	(1		
	3 -	: د	こ う こ ・	•	زند	INISE	N/SE
			∑	<u>်</u>	(CM/SEC)	(CM/SEC)	(CM/SEC)
~	5.64	0		0.220	380000	((1 18
		*	C			000	0103
	£.7 v	→ (() (-		0105	0277
7	00.	6/0*0	ر ا ا	-		.0037	0129
U		N	ر. دن	-		2600	040
n	4,15	ار: ار:	ها الم	-		005	0134
`		(L) 				0141	0341
0	3.71	<u>~</u>	S. W	•		.000	0127
P	ć	(90%.0)	(0.585)	(0,860)	(0.02857)	(0,02366)	1 6 6 6 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7
	3.24	ا ما نسم	3.1	•		.0128	01321
α		S	္တ	•		0326	0335
O	K0 - Z) ()	æ :			.0195	0149
a	, C	<i>y</i> = -	∨. 1			,0495	0380
N	70.7	† ·	7	•		0200	0201
	a		ا (د. ا سم	•		0531	0510
	. 10	2 · · · · · · · · · · · · · · · · · · ·	`_` C∵!	•		0919	0210
			•	•		,2335	0533

		19	TVC	INFLUENCED		And the second of the second o	i
STA	* 4 / 4	C C.	ပ	0	iu!	L	
		INCH	INCH	INCI	NON	T UZ	
		(CM)	(CM)	CMD	C C AL D	(M3)	
·κ	5.64	0.309	マ	0.590		3.1	
			ံ.	-	(0,727)	(0.790)	
7	4.63	αC. •.	.26	7,		, C	
		26.	• 66	•	-	7.3	ì
īΟ	4.15	• 34	.27	7.	(7)	26	
		.87	.70	*	့သ	.67	i .
vo	3.71	0.289	-	0.437	{*;	.29	
		.73	.80	•	بعار	74	1
_	3.29	.35	46	υ.,	{ Y }	37	
		689	1	*	5	76	1
&	2.89	42	443	0.520	7	4.	
		0.7	.10	(1,321)	_	0.5	
σ.	2.52	643	777	r.	4	46	
	,	60.	****** ****** *****	(1.289)	N	.16	ŧ
10	2.18	£ 43	£ 43	4	4	. 41	
			(1,111)	(1.257)	(1,232)	(1,063)	

		ÛN.	. ONL-NON	>		2>L Z	, L
STA	A/A*	ℴ	9	AVE	100.	0.4-9	7
		ISCH	INCH	C	Z	N/SE	IN/SF
				5	SEC	(CM/SEC)	(CM/SEC)
Ο.	5.64	00	0.	•	.0001	0016	0.01169
		(600*0)	(0,106)	(0.734)	(0,00038)	(0.00430)	0297
3	4.63	7.7	0	•	,0100	.0031	0133
) 	63		(J)	.0255	6200	(0.03378)
'n	4.15	34	-1	· •	.0138	.0049	0135
		9		."•	.0352	.0126	0343
9	3.71	37	~	•	.0151	.0087	.0136
. !		₹.	.54	•	.0384	.0221	0346
~	3,29	C .	3	7.	,0194	.0126	.0169
		2	5	9	.0493	.0321	.0431
3 0	2.89	(C)	0 77 •	7	.0214	.0164	.0181
į		3	~ •	-	.0544	.0416	.0462
O ^	2.52	53	45	7	.0217	.0182	0187
,		m	7	(1,177)	,0551	.0462	.0476
10	2.18	70	ω. •	₹.	.0219	.0159	.0184
		(1.378)	င့	(1,155)	557	.0405	.0467

TEST-6110

			1 V C	INFLUENCED			
STA	4/4*	6 0	ن ·		ш	L	
		INCI		S	ာ	Z	
		∑ Σ	(WD)	(CM)	(C 3)	CMOD	
~:	5.64	.63	8 7	0.502	•	4 3	
		• 62	24	(1.276)		22	:
₹	4.63	• 65	• 66	0.720	•	55	
		.67	5	(1,828)		4	
ហ	4.16	0.657	0,698	0.777	0,618	0.585	
		,66		(1.974)		4.8	
9 ,	3.71	63	99	0.660		.56	
		.60	07.	(1,676)		44	
~	3.29	• 61	69	0.702	•	5.4	
		.58	ွိ	(1,784)	•	39	
&	2,90	.59	.58	0,641		53	
,		51	848	(1,629)		.36	
σ,	2.53	£ 7 .	, 4B	0.487		6 4 8	
:		.10	س	(1,237)		.22	
0	2,18	. 42	4 3	0.447		777	
		0,		(1,136)		¥ 1	

		NON	じったする	>	NON	CALLA	TVC
STA	A / A *	V	e e	>		G-00T	
		LNCH	INCH	INCH	IN/SEC	اندا د	SVZ
		(K)	Σ C	Σ Ο	SEC	(CM/SEC)	(CM/SEC)
N	5.64	Š	.05	30.00	0.26	00	0.02147
		(0.167)	(0,150)	(1,336)	(0,00682)	190	.0545
4	4.63	70	90.	69	,0018	0027	260
1		ا يُحي	-	\$62	048	0070	ر.
'n	4.16	70	. شع	• 66	.0017	0056	.0272
		C	ه دن ۳۷	59.	* 00 d 4	0143	.0691
ø	3.71	17	\$ 2.	\$62	.0072	6600	256
		5	6	.59	,0104	0251	.0651
_	ბ. გ.	2	و رين رين	.61	0111	0136	.0252
		. Q	£ €	,57	.0282	0346	.0641
nc	2.90	3.4	07.	5	.0141	0167	.0239
7		aC.	₹ 0°	8 th 8	.0360	0424	.0607
O V.	2.53	œ	717.	. 47	.0157	0183	.0193
	1		77.0	.20	.0398	0465	.0492
01)	2.18	ac m	オ.	. 43	.0158	0183	017
		αC:		(1,114)	.0405	0465	.0454
					AND A SECTION AND A SECTION AND ASSESSMENT OF THE SECTION AND ASSESSMENT OF THE SECTION AND ASSESSMENT OF THE SECTION ASSE	and the formal death or and this had been referenced as a consistence of the	Charles and the second of the

		the state of the state of the state of the state of	TVC	INFLUENCED	en e	entre entre entre de la comprese del la comprese de la comprese del la comprese de la comprese del la comprese de la comprese	emplante at higher days. We see the second statement of the desire transfer about
STA	A/A*		C	Ü	Ε	F	
		INCH	INCH	INCH	INCH	INCH	
		(CM)	(CM)	(CM)	(CM)	(CM)	
2	5.64	0.242	0.244	0.267	0.376	0.398	
to the second of the second		(0.616)	(0,621)	(0.679)	(0.955)	(1.011)	A control of the cont
4	4.63	0.364	0.320	0.383	0.455	0.471	
		(0.925)	(0.814)	(0.974)	(1.156)	(1.197)	The second secon
5	4.16	0.401	0.358	0.435	0.490	0.481	
		(1.018)	(0.909)	(1.106)	(1.244)	(1.222)	
6	3,71	0.441	0.391	0,483	0,521	0.499	
-	_	(1.121)	(0,992)	(1.227)	(1.322)	(1.266)	and analysis of parts from the second section of the colonial section of the c
7	3.29	0.473	0,454	0.521	0,540	0.513	
		(1.202)	(1,153)	(1.323)	(1,371)	(1.303)	The second section of the second section is a second section of the second section of the second section section section sections and the second section secti
8	2,90	0.503	0,514	0,529	0.541	0.522	•
		(1.277)	(1.307)	(1.343)	(1,3/4)	(1.326)	
9	2,53	0.501	0.530	0.495	0.461	0.509	
		(1.273)	(1,346)	(1.256)	(1,222)	(1,293)	response de la company de la c
10	2.18	0.472	0,467	0.434	0.463	0.453	
		(1.199)	(1,187)	(1.102)	(1.177)	(1.150)	
الخلفا							

		NO	NON-TVC		NON-TVC		TVC	
STA	A/A*	A	G	AVE	A-DUL	G-DUT	AVE-DOT	
PMPP (State on National Single) and agree		INCH	INCH	INCH	IN/SEC	IN/SEC	IN/SEC	
		(CM)	(CM)	(CM)	(CM/SEC)	(CM/SEC)	(CM/SEC)	
2	5.64	-0.016	0.039	0.306	-0.00067	0.00159	0.01248	
		(=0.042)	(0,099)	(0.776)	(-0.00169)	(0.00405)	(0.03169)	
4	4.63	0.046	0.075	0.399	0.00189	0.00306	0.01628	
	estatura eta la propia de la completa de galendo estado esperando esperando esperando esperando esperando espe	(0.118)	(0.190)	(1.013)	(0,00480)	(0.00777)	(0.04135)	
5	4.16	0.079	0.119	0.433	0,00323	0.00486	0.01767	
. ***		(0.201)	(0,303)	(1.100)	(0.00819)	(0.01235)	(0.04489)	
6	3.71	0.215	0,225	0.467	0.00877	0.00920	0.01905	
a		(0.546)	(0.573)	(1.186)	(0.02228)	(0.02337)	(0.04840)	
7	3.29	0.320	0.325	0.500	0.01307	0.01327	0.02041	
alternation and the	CANADA A MARIA TA MARIA CA A CAMBRIAN AND AND AND AND AND	(0.813)	(0.826)	(1,270)	(0.03320)	(0.03370)	(0.05185)	
8	2.90	0.422	0.406	0,522	0.01721	0.01659	0.02130	
		(1.071)	(1,032)	(1.325)	(0.04372)	(0.04214)	(0.05410)	
9	2.53	0.447	0,428	0.503	0.01824	0.01746	0.02054	
		(1.135)	(1,086)	(1.278)	(0.04633)	(0,04435)	(0.05217)	
10	2.18	0.419	0,412	0.458	0.01712	0.01681	0.01869	
		(1.065)	(1,046)	(1.163)	(0.04348)	(0.04269)	(0.04746)	